The industrial-grade optical parametric amplifier I-OPA series represents a new era of simplicity and reliability in wavelength‑tunable femtosecond sources. Building on decades of expertise in optical parametric amplifiers, the I-OPA combines wavelength tunability with a robust industrial design.

Integrated seamlessly into the CARBIDE or PHAROS lasers, the rugged I-OPA offers stability comparable to industrial harmonic generators. Its sealed design provides mechanical stability and eliminates the effects of air turbulence, minimizing energy fluctuations and ensuring stable long-term performance.

The tunable I-OPA provides a wide tuning range and is primarily intended for applications in spectroscopy and microscopy:

  • I-OPA-HP is optimized for coupling with HARPIA spectroscopy systems, serving as a pump beam source for ultrafast pump-probe spectroscopy.
  • I-OPA-F is tailored for multiphoton microscopy.
  • I-OPA-ONE is designed for IR spectroscopy and other applications requiring high-energy MIR pulses.

All models also support micromachining and various other industrial applications.

For applications requiring a single wavelength, the fixed-wavelength I-OPA offers a cost-effective and reliable solution.

Specifications
ModelI‑OPA‑HPI‑OPA‑FI‑OPA‑ONE
Output specifications
ConfigurationORPHEUSORPHEUS‑FORPHEUS‑ONE
Pump powerUp to 40 WUp to 40 WUp to 40 W
Pump powerUp to 40 W
Pump pulse energy20 – 400 µJ20 – 400 µJ20 – 400 µJ
Pump pulse energy20 – 400 µJ
Repetition rateUp to 2 MHzUp to 2 MHzUp to 2 MHz
Repetition rateUp to 2 MHz
Tuning range 1)640 – 1010 nm (Signal)
1050 – 2600 nm (Idler)
650 – 920 nm (Signal)
1200 – 2500 nm (Idler)
1350 – 2000 nm (Signal)
2100 – 4500 nm (Idler)
Conversion efficiency
(40 – 400 μJ pump; up to 1 MHz)
> 7% @ 700 nm> 7% @ 700 nm> 9% @ 1550 nm
Conversion efficiency
(40 – 400 μJ pump; up to 1 MHz)
> 7% @ 700 nm> 9% @ 1550 nm
Conversion efficiency
(20 – 40 μJ pump; up to 2 MHz)
> 3.5% @ 700 nm> 3.5% @ 700 nm> 6% @ 1550 nm
Conversion efficiency
(20 – 40 μJ pump; up to 2 MHz)
> 3.5% @ 700 nm> 6% @ 1550 nm
Spectral bandwidth 2)80 – 220 cm‑1 @ 700 – 960 nm200 – 1000 cm‑1 @ 650 – 920 nm
150 – 1000 cm‑1 @ 1200 – 2000 nm
60 – 150 cm‑1 @ 1450 – 2000 nm
Pulse duration 2) 3)120 – 250 fs< 55 fs @ 800 – 920 nm
< 70 fs @ 650 – 800 nm
< 100 fs @ 1200 – 2000 nm
100 – 300 fs
Long-term power stability, 8 h 4)< 1% @ 800 nm< 1% @ 800 nm< 1% @ 1550 nm
Long-term power stability, 8 h 4)< 1% @ 800 nm< 1% @ 1550 nm
Pulse-to-pulse energy stability, 1 min 4)< 1% @ 800 nm< 1% @ 800 nm< 1% @ 1550 nm
Pulse-to-pulse energy stability, 1 min 4)< 1% @ 800 nm< 1% @ 1550 nm
Wavelength extension options320 – 505 nm (SHS) 5)
525 – 640 nm (SHI) 5)
Contact sales@lightcon.com4500 – 10000 nm (DFG)
Pulse compression options 2)n/aSCMP (Signal pulse compressor)
ICMP (Idler pulse compressor)
GDD-CMP (Compressor with GDD control)
n/a
Pump laser requirements
Environmental & utility requirements
ModelI‑OPA‑HPI‑OPA‑FI‑OPA‑ONE
  1. In the case of a fixed wavelength (FW), a single wavelength can be selected from the Signal or Idler range. Signal may have an accessible Idler pair, and vice versa.
  2. I‑OPA‑F broad-bandwidth pulses are compressed externally. Typical pulse duration before compression: 120 – 250 fs, after compression: 25 – 70 fs @ 650 – 920 nm, 40 – 100 fs @ 1200 – 2000 nm.
  3. Output pulse duration depends on the selected wavelength and pump laser pulse duration.
  4. Expressed as normalized root mean squared deviation (NRMSD).
  5. Conversion efficiency is 1.2% at the peak of the SH package; specified as the percentage of pump power.
  6. Specifications are guaranteed for a maximum temperature variation of ± 1ºC and humidity variation of ± 10%.
  7. I-OPA is powered by the same electrical source as the pump laser. Thus, refer to the pump laser electrical requirements.
Performance

For custom tuning curves visit Optics ToolBox.

Drawings
I-OPA with CARBIDE laser
I-OPA with PHAROS laser
Publications
Three-photon spinning disk high-speed microscopy
Y. Liao, S. Cheng, G. H. Huang, J. Lee, L. Chu et al.
High-Speed Biomedical Imaging and Spectroscopy IX • 2024
X-photon laser direct write 3D nanolithography
E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius et al.
Virtual and Physical Prototyping • 2023
1
2