The industrial-grade optical parametric amplifier I-OPA series represents a new era of simplicity and reliability in wavelength‑tunable femtosecond sources. Building on decades of expertise in optical parametric amplifiers, the I-OPA combines wavelength tunability with a robust industrial design.

Integrated seamlessly into the CARBIDE or PHAROS lasers, the rugged I-OPA offers stability comparable to industrial harmonic generators. Its sealed design provides mechanical stability and eliminates the effects of air turbulence, minimizing energy fluctuations and ensuring stable long-term performance.

The tunable I-OPA provides a wide tuning range and is primarily intended for applications in spectroscopy and microscopy:

  • I-OPA-HP is optimized for coupling with HARPIA spectroscopy systems, serving as a pump beam source for ultrafast pump-probe spectroscopy.
  • I-OPA-F is tailored for multiphoton microscopy.
  • I-OPA-ONE is designed for IR spectroscopy and other applications requiring high-energy MIR pulses.

All models also support micromachining and various other industrial applications.

For applications requiring a single wavelength, the fixed-wavelength I-OPA offers a cost-effective and reliable solution.

Specifications
ModelI‑OPA‑HPI‑OPA‑FI‑OPA‑ONE
Output specifications
ConfigurationORPHEUSORPHEUS‑FORPHEUS‑ONE
Pump powerUp to 40 WUp to 40 WUp to 40 W
Pump powerUp to 40 W
Pump pulse energy20 – 400 µJ20 – 400 µJ20 – 400 µJ
Pump pulse energy20 – 400 µJ
Repetition rateUp to 2 MHzUp to 2 MHzUp to 2 MHz
Repetition rateUp to 2 MHz
Tuning range 1)640 – 1010 nm (Signal)
1050 – 2600 nm (Idler)
650 – 920 nm (Signal)
1200 – 2500 nm (Idler)
1350 – 2000 nm (Signal)
2100 – 4500 nm (Idler)
Conversion efficiency
(40 – 400 μJ pump; up to 1 MHz)
> 7% @ 700 nm> 7% @ 700 nm> 9% @ 1550 nm
Conversion efficiency
(40 – 400 μJ pump; up to 1 MHz)
> 7% @ 700 nm> 9% @ 1550 nm
Conversion efficiency
(20 – 40 μJ pump; up to 2 MHz)
> 3.5% @ 700 nm> 3.5% @ 700 nm> 6% @ 1550 nm
Conversion efficiency
(20 – 40 μJ pump; up to 2 MHz)
> 3.5% @ 700 nm> 6% @ 1550 nm
Spectral bandwidth 2)80 – 220 cm‑1 @ 700 – 960 nm200 – 1000 cm‑1 @ 650 – 920 nm
150 – 1000 cm‑1 @ 1200 – 2000 nm
60 – 150 cm‑1 @ 1450 – 2000 nm
Pulse duration 2) 3)120 – 250 fs< 55 fs @ 800 – 920 nm
< 70 fs @ 650 – 800 nm
< 100 fs @ 1200 – 2000 nm
100 – 300 fs
Long-term power stability, 8 h 4)< 1% @ 800 nm< 1% @ 800 nm< 1% @ 1550 nm
Long-term power stability, 8 h 4)< 1% @ 800 nm< 1% @ 1550 nm
Pulse-to-pulse energy stability, 1 min 4)< 1% @ 800 nm< 1% @ 800 nm< 1% @ 1550 nm
Pulse-to-pulse energy stability, 1 min 4)< 1% @ 800 nm< 1% @ 1550 nm
Wavelength extension options320 – 505 nm (SHS) 5)
525 – 640 nm (SHI) 5)
Contact sales@lightcon.com4500 – 10000 nm (DFG)
Pulse compression options 2)n/aSCMP (Signal pulse compressor)
ICMP (Idler pulse compressor)
GDD-CMP (Compressor with GDD control)
n/a
Pump laser requirements
Environmental & utility requirements
ModelI‑OPA‑HPI‑OPA‑FI‑OPA‑ONE
  1. In the case of a fixed wavelength (FW), a single wavelength can be selected from the Signal or Idler range. Signal may have an accessible Idler pair, and vice versa.
  2. I‑OPA‑F broad-bandwidth pulses are compressed externally. Typical pulse duration before compression: 120 – 250 fs, after compression: 25 – 70 fs @ 650 – 920 nm, 40 – 100 fs @ 1200 – 2000 nm.
  3. Output pulse duration depends on the selected wavelength and the pump laser pulse duration.
  4. Expressed as normalized root mean squared deviation (NRMSD).
  5. Conversion efficiency is 1.2% at the peak of the SH package; specified as the percentage of pump power.
  6. Specifications are guaranteed for a maximum temperature variation of ± 1ºC and humidity variation of ± 10%.
  7. I-OPA is powered by the same electrical source as the pump laser. Thus, refer to the pump laser electrical requirements.
Performance

For custom tuning curves visit Optics ToolBox.

Drawings
I-OPA with CARBIDE laser
I-OPA with PHAROS laser
Publications
Three-photon spinning disk high-speed microscopy
Y. Liao, S. Cheng, G. H. Huang, J. Lee, L. Chu et al.
High-Speed Biomedical Imaging and Spectroscopy IX • 2024
X-photon laser direct write 3D nanolithography
E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius et al.
Virtual and Physical Prototyping • 2023
1
2