Comprehensive Spectroscopy Systems
The HARPIA comprehensive spectroscopy system performs a variety of sophisticated time-resolved spectroscopic measurements in a compact footprint. It offers an intuitive user experience and easy day-to-day maintenance, meeting the needs of today’s scientific applications.
The HARPIA-TA is a transient absorption spectroscopy system. Extension modules and customization options tailor the HARPIA system to specific measurement needs. In particular, it can be expanded using time-correlated single-photon counting and fluorescence upconversion (HARPIA-TF), third beam delivery (HARPIA-TB), and microscopy (HARPIA-MM) modules. HARPIA is designed for easy switching between measurement modes and comes with dedicated data acquisition and analysis software. Each module is contained in a monolithic aluminum body, ensuring excellent optical stability and minimal optical path lengths.
The HARPIA-TG is a novel transient grating spectroscopy system dedicated to the measurement of the diffusion coefficient and carrier lifetime. The fully automated and computer-controlled system enables the measurement in a matter of minutes.
- See HARPIA selection guide for more details or contact sales@lightcon.com for typical configurations.
- See ultrafast spectroscopy applications for more information.
- Transient absorption and reflection in bulk and microscopy
- Multi-pulse transient absorption and reflection
- Femtosecond fluorescence upconversion
- Femtosecond stimulated Raman scattering (FSRS)
- Picosecond-to-microsecond fluorescence TCSPC
- Intensity-dependent transient absorption and reflection
- Flash photolysis, Z-scan
- Market-leading sensitivity
- 330 nm – 24 μm spectral range
- Probe delay ranges from 2 to 8 ns
- Pump pulse energies down to nJ
- Cryostat and peristaltic pump support
- Femtosecond-to-microsecond measurements
- Automated switching between fluorescence upconversion and TCSPC
- Automated spectral scanning and calibration
- Optional operation as a stand-alone unit
- Delivery of an additional femtosecond or picosecond beam
- Polarization, intensity, and delay control
- Femtosecond stimulated Raman scattering (FSRS) support
- Z-scan support
- Down to 2 μm spatial resolution
- Broadband and monochromatic probe options
- Motorized XYZ sample stage
- Transmission, specular and diffuse reflection geometry






The HARPIA spectroscopy system achieves an excellent signal‑to‑noise ratio at high repetition rate and low energy excitation conditions. The graphs below compare the signal-to-noise ratio (SNR) of difference absorption spectra obtained with a Ti:Sapphire laser operating at 1 kHz and a PHAROS laser operating at 64 kHz with the same acquisition time.
Enhanced transfer efficiency of plasmonic hot-electron across Au/GaN interface by the piezo-phototronic effect
Y. Zhu, C. Deng, C. He, W. Zhao, Z. Chen, S. Li, K. Zhang, and X. Wang, Nano Energy 93, 106845 (2022).
Insight into perovskite light-emitting diodes based on PVP buffer layer
N. Jiang, Z. Wang, J. Hu, M. Liu, W. Niu, R. Zhang, F. Huang, and D. Chen, 241, 118515 (2022).
Intrachain photophysics of a donor–acceptor copolymer
H. Nho, W. Park, B. Lee, S. Kim, C. Yang, and O. Kwon, Physical Chemistry Chemical Physics 4 (24), 1982-1992 (2022).
Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO2 Reduction
J. Zeng, X. Wang, B. Xie, Q. Li, and X. Zhang, Journal of the American Chemical Society 3 (144), 1218-1231 (2022).
Photocatalytic overall water splitting under visible light enabled by a particulate conjugated polymer loaded with iridium
Y. Bai, C. Li, L. Liu, Y. Yamaguchi, B. Mounib, H. Yang, A. Gardner, M. Zwijnenburg, N. Browning, A. Cowan et al., (2022).
Ultrafast Excited-State Proton Transfer of a Cationic Superphotoacid in a Nanoscopic Water Pool
H. Nho, A. Adhikari, and O. Kwon, The Journal of Physical Chemistry B (2022).
Unveiling Charge Carrier Recombination, Extraction, and Hot-Carrier Dynamics in Indium Incorporated Highly Efficient and Stable Perovskite Solar Cells
C. Zhou, T. Zhang, C. Zhang, X. Liu, J. Wang, J. Lin, and X. Chen, Advanced Science, 2103491 (2022).
Charge photogeneration and recombination in ternary polymer solar cells based on compatible acceptors
R. Hu, W. Zhang, Z. Xiao, J. Zhang, X. Su, G. Wang, J. Chen, X. He, and R. Wang, Journal of Materials Science 25 (56), 14181-14195 (2021).
Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes
R. Muñoz‑Mármol, P. G. Boj, J. M. Villalvilla, J. A. Quintana, N. Zink‑Lorre, N. Sastre‑Santos, J. Aragó, E. Ortí, P. Baronas, D. Litvinas et al., The Journal of Physical Chemistry C (2021).
Energy transfer in (PEA)2FAn-1PbnBr3n+1 quasi-2D perovskites
D. Litvinas, R. Aleksiejūnas, P. Ščajev, P. Baronas, V. Soriūtė, C. Qin, T. Fujihara, T. Matsushima, C. Adachi, and S. Juršėnas, Journal of Materials Chemistry C (2021).