Contents

FEMTOSECOND LASERS / 4

PHAROS
Modular-Design Industrial-Grade Femtosecond Lasers / 4
– Automated Harmonics Generators / 8

NEW CARBIDE
Unibody-Design Industrial-Grade Femtosecond Lasers / 10
– Automated Harmonics Generators / 13

I-OPA
Industrial-grade Optical Parametric Amplifier / 14

BiBurst
Tunable GHz and MHz Burst with Burst-in-Burst Capability / 9

OSCILLATORS / 18

FLINT
Femtosecond Yb Oscillators / 18

EXAMPLES OF INDUSTRIAL APPLICATIONS / 20

LIST OF LOCAL DISTRIBUTORS / 24
Founded in 1994 as a Vilnius University spin-off, LIGHT CONVERSION is now a major ultrafast laser technology company with over 300 employees, 10% of which hold PhD degrees, and more than 5000 installed systems worldwide. LIGHT CONVERSION designs and manufactures ultrafast lasers, oscillators, optical parametric amplifiers (OPAs), optical parametric chirped pulse amplifiers (OPCPAs), and spectroscopy systems for industrial and scientific applications.

LIGHT CONVERSION TOPAS and ORPHEUS series of OPAs constitute around 80% of the global continuously wavelength-tunable ultrafast light source market. Ultrafast laser applications are covered by the PHAROS and CARBIDE lasers. PHAROS is designed for basic research as well as material processing applications with a focus on customizability, reliability and process-tailored laser output parameters. CARBIDE is a compact industrial-grade femtosecond laser with air- and water-cooled models reaching average powers of up to 80 W. LIGHT CONVERSION also produces HARPIA – a comprehensive femtosecond and nanosecond pump-probe spectroscopy and microscopy system.

LIGHT CONVERSION has over 15 years of experience in managing international R&D projects. LIGHT CONVERSION was one of the key technology providers for the single-cycle SYLOS laser at the ELI-ALPS facility delivering CEP-stabilized 6.6 fs pulses with a peak power of 4.9 TW at 1 KHz.

With a proven competence in the design and manufacture of lasers, OPAs and spectroscopy systems combined with close ties to research programs at Vilnius University and state-of-the-art R&D facilities, LIGHT CONVERSION offers unique solutions for today’s most challenging ultrafast laser technology and application problems.
PHAROS
Modular-Design Industrial-Grade Femtosecond Lasers

FEATURES
- 190 fs – 20 ps tunable pulse duration
- 2 mJ maximum pulse energy
- 20 W maximum output power
- Single-shot – 1 MHz repetition rate
- Pulse picker for pulse-on-demand mode
- Industrial-grade design
- Optional automated harmonic generator
- Optional CEP stabilization
- Optional repetition rate locking to an external source

PHAROS is a series of femtosecond lasers combining millijoule pulse energy and high average power. PHAROS features a mechanical and optical design optimized for both scientific and industrial applications. A compact, thermally-stabilized, and sealed design enables PHAROS integration into various optical setups and machining workstations. Diode-pumped Yb medium significantly reduces maintenance costs and provides a long laser lifetime, while the robust optomechanical design enables stable operation in varying environments.

The tunability of PHAROS allows the system to cover applications normally requiring multiple different laser systems. Tunable parameters include pulse duration (190 fs – 20 ps), repetition rate (single-shot – 1 MHz), pulse energy (up to 2 mJ), and average power (up to 20 W). A pulse-on-demand mode is available using the built-in pulse picker. The versatility of PHAROS can be extended by a variety of optional modules.

PHAROS PH2-SP-1mJ / 6 W, 1 mJ
PHAROS PH2-SP-20W-2mJ / 20 W, 2 mJ
PHAROS PH2-10W / 10 W, 200 µJ
PHAROS PH2-20W / 20 W, 400 µJ

Typical spectrum of PHAROS
Typical pulse duration of PHAROS
Pulse energy vs fundamental repetition rate of PHAROS
SPECIFICATIONS

Model | PH2-10W | PH2-15W | PH2-20W | PH2-SP-1mJ | PH2-SP-20W-2mJ

OUTPUT CHARACTERISTIC

<table>
<thead>
<tr>
<th>Description</th>
<th>PH2-10W</th>
<th>PH2-15W</th>
<th>PH2-20W</th>
<th>PH2-SP-1mJ</th>
<th>PH2-SP-20W-2mJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum output power</td>
<td>10 W</td>
<td>15 W</td>
<td>20 W</td>
<td>10 W</td>
<td>20 W</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>< 290 fs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse duration tuning range</td>
<td>290 fs – 10 ps (20 ps on request)</td>
<td></td>
<td>190 fs – 10 ps (20 ps on request)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum pulse energy</td>
<td>0.4 mJ</td>
<td>1 mJ</td>
<td>2 mJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition rate</td>
<td>Single-shot – 1 MHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse selection</td>
<td>Single-shot, pulse-on-demand, any fundamental repetition rate division</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center wavelength</td>
<td>1030 ± 10 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Linear, horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam quality</td>
<td>TEM₀₀ ; M² < 1.2</td>
<td></td>
<td></td>
<td>TEM₀₀ ; M² < 1.3</td>
<td></td>
</tr>
<tr>
<td>Beam diameter</td>
<td>2.5 mm</td>
<td>2.9 mm</td>
<td>4.3 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse-to-pulse energy stability</td>
<td>RMS deviation²< 0.5% over 24 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term power stability</td>
<td>RMS deviation²< 0.5% over 100 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam pointing stability</td>
<td>< 20 µrad/°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-pulse contrast</td>
<td>< 1 : 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-pulse contrast</td>
<td>< 1 : 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPTIONAL EXTENSIONS

- Oscillator output: Optional. Contact sales@lightcon.com for more details or customized solutions
- Typical output: 1 – 6 W, 50 – 250 fs, ≈ 1035 nm, ≈ 76 MHz; available simultaneously
- Harmonic generator: Integrated, optional
- Output wavelength: 515 nm, 343 nm, 257 nm, or 206 nm
- Optical parametric amplifier: Integrated, optional
- Tuning range: 320 – 10000 nm
- BiBurst option: Tunable GHz and MHz burst with burst-in-burst capability, optional

GHz-Burst
- Intra burst pulse period: 200 ± 40 ps
- Number of pulses, P: 1 ... 25

MHz-Burst
- Intra burst pulse period: ≈ 15 ns
- Number of pulses, N: 1 ... 9 (7 with FEC)

PHYSICAL DIMENSIONS

- Laser head (L × W × H): 780 × 419 × 230 mm
- Chiller (L × W × H): 590 × 484 × 267 mm
- 24 V DC power supply (L × W × H): 280 × 144 × 49 mm

ENVIRONMENTAL & UTILITY REQUIREMENTS

- Operating temperature: 15 – 30 °C (air conditioning recommended)
- Relative humidity: < 80% (non-condensing)
- Electrical requirements: 100 V AC, 12 A – 240 V AC, 5 A; 50 – 60 Hz
- Rated power: 1000 W
- Power consumption: 600 W
- Electrical requirements (chiller): 100 – 230 V AC; 50 – 60 Hz
- Rated power (chiller): 1400 W
- Power consumption (chiller): 1000 W

¹⁾ More models are available on request.
²⁾ Assuming Gaussian pulse shape.
³⁾ Precise wavelengths for specific models are available on request.
⁴⁾ FWHM, measured at laser output, using maximum pulse energy.
⁵⁾ Under stable environmental conditions.
⁶⁾ Normalized to average pulse energy, NRMSD.
⁷⁾ Custom spacing is available on request.
⁸⁾ Maximum number of pulses in a burst depends on the laser repetition rate. Custom number of pulses are available on request.
⁹⁾ Dimensions might increase for the lasers with integrated optional modules.
EXAMPLES OF INDUSTRIAL APPLICATIONS

FLINT OSCILLATORS

I-OPA OPTICAL PARAMETRIC AMPLIFIERS

CARBIDE LASERS

PHAROS LASERS

Ambient temperature, °C

Output power, W

NRMSD = 0.12%

Time, h

Beam direction, µrad

NRMSD = 0.03%

Ambient temperature

Horizontal beam direction

Vertical beam direction

PHAROS output power and beam direction with power lock enabled, under harsh environmental conditions

Output power of industrial-grade PHAROS lasers operating 24/7 and current of pump diodes during the years

Typical M² measurement data of PHAROS

Typical near-field beam profile of PHAROS at 200 kHz

Typical far-field beam profile of PHAROS at 200 kHz

Long-term power stability of PHAROS

STABILITY MEASUREMENTS
DRAWINGS

PHAROS-PH2 laser PH2-730 housing drawing

Front view
- Oscillator output
- 1H output without H
 - 1030 nm
- 1H output with Auto H
 - 1030 nm
- 2H output
 - 515 nm
- 3H/4H output
 - 343 nm / 257 nm

Side view

Top view

- Oscillator output (*with Oscillator output)
- 388.5°

- 120
- 20
- 20
- 90
- 70
- 90
- 388.5°
- 34°
- 388.5°
- 34°

Example of Industrial Applications
- Flint Oscillators
- I-OPA Optical Parametric Amplifiers
- Carbide Lasers
- Pharos Lasers
HG | PHAROS

Automated Harmonic Generators

FEATURES
- 515 nm, 343 nm, 257 nm, or 206 nm output
- Automated harmonic selection
- Mounted directly on the laser head
- Industrial-grade design

PHAROS lasers equipped with automated harmonic generators (HGs) provide a selection of fundamental (1030 nm), second (515 nm), third (343 nm), fourth (257 nm), or fifth (206 nm) harmonic outputs using software control. HGs are perfect for industrial applications that require a single-wavelength output. Modules, mounted directly at the output of the laser, are fully integrated into the system.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>2H (-HE)</th>
<th>2H-3H (-HE)</th>
<th>2H-4H (-HE)</th>
<th>4H-5H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output wavelength</td>
<td>1030 nm</td>
<td>1030 nm</td>
<td>1030 nm</td>
<td>1030 nm</td>
</tr>
<tr>
<td>(automated selection)</td>
<td>515 nm</td>
<td>515 nm</td>
<td>515 nm</td>
<td>257 nm</td>
</tr>
</tbody>
</table>

| Pump pulse duration | 190 – 300 fs |

<table>
<thead>
<tr>
<th>Conversion efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 50% (2H)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam quality (M²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 400 µJ pump</td>
</tr>
<tr>
<td>< 1.3 (2H), typical < 1.15</td>
</tr>
<tr>
<td>< 1.3 (2H), typical < 1.15</td>
</tr>
<tr>
<td>< 1.3 (2H), typical < 1.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulse energy vs repetition rate of PHAROS with HG</th>
</tr>
</thead>
</table>

²⁾ Depends on pump laser model.
³⁾ High energy versions are available, contact sales@lightcon.com for specifications.
⁴⁾ Maximum output power of 1 W.
⁵⁾ Maximum output power of 0.15 W.
BiBurst option

Tunable GHz and MHz Burst with Burst-in-Burst Capability

PHAROS and CARBIDE (CB3) lasers have an option for tunable GHz and MHz burst with burst-in-burst capability – called BiBurst.

In standard mode, a single pulse is emitted at some fixed frequency. In burst mode, the output consists of pulse packets instead of single pulses. Each packet consists of a certain number of equally separated pulses. MHz-Burst contains \(N \) pulses with a nanosecond period, GHz-Burst contains \(P \) pulses with a picosecond period. If both bursts are used, the equally separated pulse packets contain sub-packets of pulses (burst-in-burst, BiBurst).

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>CARBIDE-CB3</th>
<th>PHAROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHz-Burst</td>
<td>Intra burst pulse period</td>
<td>440 ± 40 ps</td>
</tr>
<tr>
<td></td>
<td>Number of pulses, (P)</td>
<td>1 ... 10</td>
</tr>
<tr>
<td>MHz-Burst</td>
<td>Intra burst pulse period</td>
<td>≈ 15 ns</td>
</tr>
<tr>
<td></td>
<td>Number of pulses, (N)</td>
<td>1 ... 10</td>
</tr>
</tbody>
</table>

¹⁾ Custom spacing is available on request.
²⁾ Maximum number of pulses in a burst depends on the laser repetition rate. Custom number of pulses is available on request.

PHAROS and CARBIDE lasers with the BiBurst option bring new capabilities to high-tech manufacturing industries such as consumer electronics, integrated photonic chip manufacturing, future display manufacturing, and quantum technologies. The applications include:
- brittle material drilling and cutting
- deep engraving
- selective ablation
- volume modification of transparent materials
- hidden marking
- surface polishing
- surface functionalization

Tunable GHz and MHz Burst with Burst-in-Burst Capability

- **BiBurst**
 - Frequency adjustable 1 kHz – 2 MHz
 - Adjustable intra-burst amplitude slope
 - Adjustable number of pulses in GHz and MHz burst

GHz-Burst

- Pulse duration adjustable 190 fs – 20 ps

MHz-Burst

- Pulse duration 1 nsec
CARBIDE

Unibody-Design Industrial-Grade Femtosecond Lasers

FEATURES

- 190 fs – 20 ps tunable pulse duration
- 800 µJ maximum pulse energy
- 80 W maximum output power
- Single-shot – 2 MHz repetition rate
- Pulse picker for pulse-on-demand mode
- Industrial-grade design
- Air- or water-cooled models
- Optional automated harmonic generator
- Optional scientific interface module

CARBIDE is a series of femtosecond lasers combining high average power and excellent power stability. CARBIDE features market-leading output parameters without compromises to beam quality and stability. A compact and robust optomechanical CARBIDE design allows a variety of applications in top-class research centers, as well as display, automotive, LED, medical, and other industries. The reliability of CARBIDE has been proven by hundreds of systems operating 24/7 in the industrial environment.

The tunability of CARBIDE lasers enables our customers to discover the most efficient manufacturing processes. Tunable parameters include pulse duration (190 fs – 20 ps), repetition rate (single-shot – 2 MHz), pulse energy (up to 0.8 mJ), and average power (up to 80 W). A pulse-on-demand mode is available using the built-in pulse picker. The CARBIDE lasers can be equipped with industrial-grade modules.
SPECIFICATIONS

OUTPUT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Model</th>
<th>CB3-20W</th>
<th>CB3-40W</th>
<th>CB3-80W</th>
<th>CBS</th>
<th>CBS-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling method</td>
<td>Water-cooled</td>
<td>Air-cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum output power</td>
<td>20 W</td>
<td>40 W</td>
<td>80 W</td>
<td>6 W</td>
<td>5 W</td>
</tr>
<tr>
<td>Pulse duration</td>
<td>< 250 fs</td>
<td>< 290 fs</td>
<td>< 190 fs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse duration tuning range</td>
<td>250 fs – 10 ps</td>
<td>290 fs – 20 ps</td>
<td>190 fs – 20 ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum pulse energy</td>
<td>0.4 mJ</td>
<td>0.8 mJ</td>
<td>100 µJ</td>
<td>83 µJ</td>
<td>100 µJ</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>Single-shot – 1 MHz (2 MHz on request)</td>
<td>Single-shot – 2 MHz</td>
<td>Single-shot – 1 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse selection</td>
<td>Single-shot, pulse-on-demand, any fundamental repetition rate division</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center wavelength</td>
<td>1030 ± 10 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Linear, vertical; 1 : 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam quality</td>
<td>TEM₀₀; M² < 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam diameter</td>
<td>2.5 mm</td>
<td>2.7 mm</td>
<td>1.4 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse-to-pulse energy stability</td>
<td>RMS deviation < 0.5% over 24 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term power stability</td>
<td>RMS deviation < 0.5% over 100 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam pointing stability</td>
<td>< 20 μrad/°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse picker</td>
<td>FEC</td>
<td>included</td>
<td>included</td>
<td>included</td>
<td>included</td>
</tr>
<tr>
<td>Pulse picker leakage</td>
<td>< 0.5%</td>
<td>< 2%</td>
<td>< 0.1%</td>
<td>< 2%</td>
<td></td>
</tr>
</tbody>
</table>

OPTIONAL EXTENSIONS

<table>
<thead>
<tr>
<th>Harmonic generators</th>
<th>Integrated, optional (see page 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical parametric amplifier</td>
<td>Integrated, optional (see page 15)</td>
</tr>
<tr>
<td>Tuning range</td>
<td>320 – 10000 nm</td>
</tr>
<tr>
<td>BiBurst option</td>
<td>Tunable GHz and MHz burst with burst-in-burst capability, optional (see page 9)</td>
</tr>
<tr>
<td>GHz-Burst</td>
<td>Intra burst pulse period</td>
</tr>
<tr>
<td>Number of pulses, P</td>
<td>1 ... 10</td>
</tr>
<tr>
<td>MHz-Burst</td>
<td>Intra burst pulse period</td>
</tr>
<tr>
<td>Number of pulses, N</td>
<td>1 ... 10</td>
</tr>
</tbody>
</table>

PHYSICAL DIMENSIONS

Laser head (L × W × H)	632 × 305 × 173 mm	631 × 324 × 167 mm	
Chiller (L × W × H)	680 × 484 × 307 mm	Not required	
24 V DC power supply (L × W × H)	280 × 144 × 49 mm	320 × 200 × 75 mm	220 × 95 × 46 mm

ENVIRONMENTAL & UTILITY REQUIREMENTS

Relative humidity	< 80% (non-condensing)		
Electrical requirements	100 V AC, 7 A – 240 V AC, 3 A; 50 – 60 Hz	100 V AC, 12 A – 240 V AC, 5 A; 50 – 60 Hz	100 V AC, 3 A – 240 V AC, 1.3 A; 50 – 60 Hz
Rated power	600 W	1000 W	300 W
Power consumption	500 W	700 W	150 W
Electrical requirements (chiller)	100 – 230 V AC; 50 – 60 Hz	200 – 230 V AC; 50 – 60 Hz	
Rated power (chiller)	1400 W	2000 W	Not required
Power consumption (chiller)	1000 W	1300 W	

1) Water-cooled version available on request.
2) Assuming Gaussian pulse shape.
3) Precise wavelengths for specific models available upon request.
4) FWHM, measured at laser output, using maximum pulse energy.
5) Under stable environmental conditions.
6) Normalized to average pulse energy, NRMSD.
7) Provides fast energy control; external analog control input available. Response time = next available RA pulse.
8) Enhanced contrast AOM. Provides fast amplitude control of output pulse train.
9) Custom spacing is available on request.
10) Maximum number of pulses in a burst depends on the laser repetition rate. Custom number of pulses is available on request.
STABILITY MEASUREMENTS

Output power, beam direction, and beam position of CARBIDE-CB5 under harsh environmental conditions

DRAWINGS

Drawing of CARBIDE-CB3

Drawing of air-cooled CARBIDE-CB5 with attenuator
EXAMPLES OF INDUSTRIAL APPLICATIONS

| CARBIDE OSCILLATORS | I-OPA OPTICAL PARAMETRIC AMPLIFIERS | PHAROS LASERS |

CARBIDE lasers equipped with automated harmonic generators (HGs) provide a selection of fundamental (1030 nm), second (515 nm), third (343 nm), or fourth (257 nm) harmonic outputs using software control.

HG | CARBIDE
Automated Harmonic Generators

FEATURES
- 515 nm, 343 nm, or 257 nm output
- Automated harmonic selection
- Mounted directly on the laser head
- Industrial-grade design
- 30 W UV model option

HGs are perfect for industrial applications that require a single-wavelength output. Modules, mounted directly at the output of the laser, are fully integrated into the system.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>2H</th>
<th>2H-3H</th>
<th>2H-4H</th>
<th>CBM03-30W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output wavelength</td>
<td>1030 nm</td>
<td>1030 nm</td>
<td>1030 nm</td>
<td>1030 nm</td>
</tr>
<tr>
<td>(automated selection)</td>
<td>515 nm</td>
<td>515 nm</td>
<td>515 nm</td>
<td>515 nm</td>
</tr>
<tr>
<td>343 nm</td>
<td></td>
<td>257 nm</td>
<td></td>
<td>343 nm</td>
</tr>
<tr>
<td>Pump pulse energy</td>
<td>20 – 800 µJ</td>
<td>50 – 800 µJ</td>
<td>20 – 800 µJ</td>
<td>< 270 µJ</td>
</tr>
<tr>
<td>Pump pulse duration</td>
<td>< 300 fs</td>
<td>≈ 500 fs</td>
<td>≈ 500 fs</td>
<td></td>
</tr>
<tr>
<td>Conversion efficiency</td>
<td>> 50% (2H)</td>
<td>> 50% (2H)</td>
<td>> 50% (2H)</td>
<td>40 W (2H)</td>
</tr>
<tr>
<td>/ Output power</td>
<td>> 25% (3H)</td>
<td>> 10% (4H)</td>
<td>30 W (3H)</td>
<td></td>
</tr>
<tr>
<td>Beam quality (M²)</td>
<td>≤ 400 µJ pump < 1.3 (2H), typical < 1.15</td>
<td>< 1.3 (2H), typical < 1.15</td>
<td>< 1.3 (2H), typical < 1.15</td>
<td>< 1.3 (2H, 3H)</td>
</tr>
<tr>
<td></td>
<td>> 400 µJ pump < 1.4 (2H)</td>
<td>< 1.4 (2H)</td>
<td>< 1.4 (2H)</td>
<td></td>
</tr>
</tbody>
</table>

¹⁾ Available only for CARBIDE-CB3-80W with maximum output power; has 1 year lifetime.
²⁾ Depends on pump laser model.
³⁾ Maximum output power of 1 W.

Typical 1H beam profile of CARBIDE-CB5 (60 kHz, 5 W)

Typical 2H beam profile of CARBIDE-CB5 (100 kHz, 3.4 W)

Typical 3H beam profile of CARBIDE-CB5 (100 kHz, 2.2 W)

Typical 4H beam profile of CARBIDE-CB5 (100 kHz, 100 mW)

Pulse energy vs repetition rate of CARBIDE-CB3-80W with HG

DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT, REFLECTED OR SCATTERED RADIATION CLASS 4 LASER PRODUCT
I-OPA
Industrial-Grade Optical Parametric Amplifier

FEATURES
- Tunable or fixed wavelength options
- Industrial-grade design
- Plug-and-play installation and user-friendly operation
- Single-shot – 2 MHz repetition rate
- Up to 40 W pump power
- < 100 fs pulse duration option
- Integrated tunable beam splitter for pump laser beam

The industrial-grade optical parametric amplifier I-OPA series marks a new era of simplicity in the world of tunable wavelength femtosecond light sources. Based on over 10 years of experience producing the ORPHEUS series of optical parametric amplifiers, this solution brings together the tunability of wavelength with the robust industrial-grade design. The I-OPA is a rugged module attachable to our PHAROS and CARBIDE lasers, providing long-term stability comparable to that of the industrial-grade harmonic generators.

The tunable-wavelength I-OPA (I-OPA-TW) provides a wide tuning range and is primarily intended for spectroscopy and microscopy applications. In particular, the -HP model is targeted to be coupled with our HARPIA spectroscopy system as a pump beam source for ultrafast pump-probe spectroscopy. The -F model is primarily designed as a light source for multiphoton microscopy, the -ONE model – for IR spectroscopy and other applications where high energy mid-IR pulses are desired. All of the models can also be used for micromachining and other industrial applications.

The fixed-wavelength I-OPA (I-OPA-FW) is primarily intended for applications that desire a single-wavelength output. The industrial-grade design provides mechanical stability and eliminates the effects of air-turbulence, minimizing energy fluctuations and ensuring stable long-term performance. The I-OPA-TW is best suited for R&D systems, while the I-OPA-FW is a cost-effective solution for large-scale production.
SPECIFICATIONS OF TUNABLE I-OPA

<table>
<thead>
<tr>
<th>Model</th>
<th>I-OPA-TW-HP</th>
<th>I-OPA-TW-F</th>
<th>I-OPA-TW-ONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on ORPHEUS model</td>
<td>ORPHEUS</td>
<td>ORPHEUS-F</td>
<td>ORPHEUS-F</td>
</tr>
<tr>
<td>Pump power</td>
<td>Up to 40 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump pulse energy</td>
<td>10 – 400 µJ</td>
<td>20 – 400 µJ</td>
<td></td>
</tr>
<tr>
<td>Repetition rate</td>
<td>Up to 2 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuning range, Signal</td>
<td>640 – 1010 nm</td>
<td>650 – 900 nm</td>
<td>1350 – 2000 nm</td>
</tr>
<tr>
<td>Tuning range, Idler</td>
<td>1050 – 2600 nm</td>
<td>1200 – 2500 nm</td>
<td>2100 – 4500 nm</td>
</tr>
</tbody>
</table>

Conversion efficiency at peak
- > 7% @ 700 nm (40 – 400 µJ pump; up to 1 MHz)
- > 3.5% @ 700 nm (10 – 40 µJ pump; up to 2 MHz)
- > 9% @ 1550 nm (40 – 400 µJ pump; up to 1 MHz)
- > 6% @ 1550 nm (20 – 40 µJ pump; up to 2 MHz)

Long-term power stability (8 h)
- < 1.5% @ 800 nm
- < 1.5% @ 1550 nm

Pulse energy stability (1 min)
- < 1.5% @ 800 nm
- < 1.5% @ 1550 nm

Additional options
- SCMP (Signal pulse compressor)
- ICMP (Idler pulse compressor)
- PCMP (pre-chirp dispersion compensator)

Spectral bandwidth
- 80 – 220 cm⁻¹ @ 700 – 960 nm
- 200 – 750 cm⁻¹ @ 650 – 900 nm
- 150 – 500 cm⁻¹ @ 1200 – 2000 nm
- 60 – 150 cm⁻¹ @ 1450 – 2000 nm

Pulse duration
- 120 – 250 fs
- < 60 fs @ 800 – 900 nm
- < 70 fs @ 650 – 800 nm
- < 100 fs @ 1200 – 2000 nm
- 100 – 300 fs

Optional wavelength extensions
- SHS: 320 – 505 nm
- SHI: 525 – 640 nm
- Conversion efficiency 1.2% at peak

Applications
- Micromachining
- Microscopy
- Spectroscopy
- Ultrafast spectroscopy
- AFM microscopy

SPECIFICATIONS OF FIXED WAVELENGTH I-OPA

<table>
<thead>
<tr>
<th>Model</th>
<th>I-OPA-FW-HP</th>
<th>I-OPA-FW-F</th>
<th>I-OPA-FW-ONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump power</td>
<td>Up to 40 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump pulse energy</td>
<td>10 – 500 µJ</td>
<td>20 – 1000 µJ</td>
<td></td>
</tr>
<tr>
<td>Repetition rate</td>
<td>Up to 2 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength selection range, Signal ¹⁾</td>
<td>640 – 1010 nm</td>
<td>650 – 900 nm</td>
<td>1350 – 2000 nm</td>
</tr>
<tr>
<td>Wavelength selection range, Idler ¹⁾</td>
<td>1050 – 2600 nm</td>
<td>1200 – 2500 nm</td>
<td>2100 – 4500 nm</td>
</tr>
</tbody>
</table>

Conversion efficiency at peak
- > 7% @ 700 nm (40 – 500 µJ pump; up to 1 MHz)
- > 3.5% @ 700 nm (10 – 40 µJ pump; up to 2 MHz)
- > 9% @ 1550 nm (40 – 1000 µJ pump; up to 1 MHz)
- > 6% @ 1550 nm (10 – 40 µJ pump; up to 2 MHz)

Long-term power stability (8 h)
- < 1.5% @ 800 nm
- < 1.5% @ 1550 nm

Pulse energy stability (1 min)
- < 1.5% @ 800 nm
- < 1.5% @ 1550 nm

Spectral bandwidth
- 80 – 220 cm⁻¹ @ 700 – 960 nm
- 200 – 750 cm⁻¹ @ 650 – 900 nm
- 150 – 500 cm⁻¹ @ 1200 – 2000 nm
- 60 – 150 cm⁻¹ @ 1450 – 2000 nm

Pulse duration
- 120 – 250 fs
- < 60 fs @ 800 – 900 nm
- < 70 fs @ 650 – 800 nm
- < 100 fs @ 1200 – 2000 nm
- 150 – 300 fs

Applications
- Micromachining
- Microscopy
- Spectroscopy
- Ultrafast spectroscopy
- Mid-IR generation

¹⁾ A single wavelength can be selected from the Signal/Idler range. Signal will have accessible Idler pair, and vice versa.

²⁾ I-OPA-FW-F outputs broad bandwidth pulses which are compressed externally.

³⁾ Output pulse duration depends on wavelength and pump laser pulse duration. I-OPA-FW-F requires external pulse compressors to achieve short pulse duration.

DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT, REFLECTED OR SCATTERED RADIATION. CLASS 4 LASER PRODUCT
COMPARISON WITH OTHER FEMTOSECOND AND PICOSECOND LASERS

<table>
<thead>
<tr>
<th>Laser technology</th>
<th>Our solution</th>
<th>HG or HIRO</th>
<th>I-OPA-FW-F</th>
<th>I-OPA-FW-ONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excimer (193 nm, 213 nm)</td>
<td>5H of PHAROS (205 nm)</td>
<td>5 µJ</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>3H of Ti:Sapphire (266 nm)</td>
<td>4H of PHAROS (257 nm)</td>
<td>10 µJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H of Nd:YAG (355 nm)</td>
<td>3H of PHAROS (343 nm)</td>
<td>25 µJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H of Nd:YAG (532 nm)</td>
<td>2H of PHAROS (515 nm)</td>
<td>50 µJ</td>
<td>35 µJ</td>
<td></td>
</tr>
<tr>
<td>Ti:Sapphire (800 nm)</td>
<td>OPA output (750 – 850 nm)</td>
<td>n/a</td>
<td>10 µJ</td>
<td></td>
</tr>
<tr>
<td>Nd:YAG (1064 nm)</td>
<td>PHAROS output (1030 nm)</td>
<td></td>
<td>100 µJ</td>
<td></td>
</tr>
<tr>
<td>Cr:Forsterite (1240 nm)</td>
<td>OPA output (1200 – 1300 nm)</td>
<td></td>
<td>5 µJ</td>
<td>n/a</td>
</tr>
<tr>
<td>Erbium (1560 nm)</td>
<td>OPA output (1500 – 1600 nm)</td>
<td>3 µJ</td>
<td>15 µJ</td>
<td></td>
</tr>
<tr>
<td>Thulium / Holmium (1.95 – 2.15 µm)</td>
<td>OPA output (1900 – 2200 nm)</td>
<td>2 µJ</td>
<td>10 µJ</td>
<td></td>
</tr>
<tr>
<td>Other sources (2.5 – 4.0 µm)</td>
<td>OPA output</td>
<td></td>
<td>1 – 5 µJ</td>
<td></td>
</tr>
</tbody>
</table>

Note that the pulse energy scales linearly in a broad range of pump parameters. For example, a PHAROS-PH2-20W laser at 50 kHz (400 µJ energy) will increase the output power twice, and the pulse energy 4 times compared to the reference table above. The pulse duration at the output is < 300 fs in all cases. The OPA output is not limited to these particular ranges of operation, it is continuously tunable as shown in tuning curves.
EXAMPLES OF INDUSTRIAL APPLICATIONS

FLINT OSCILLATORS

I-OPA OPTICAL PARAMETRIC AMPLIFIERS

CARBIDE LASERS

PHAROS LASERS

DRAWINGS

Drawing and output ports of CARBIDE-CB3 with tunable I-OPA-TW-HP

Drawing and output ports of CARBIDE-CB5 with tunable I-OPA-TW-HP

Drawing and output ports of PHAROS-PH2 with tunable I-OPA-TW-HP

Drawing and output ports of PHAROS-PH2 with fixed-wavelength I-OPA-FW-HP
FLINT

Femtosecond Yb Oscillators

FEATURES
- < 40 fs pulse duration
- Up to 260 nJ pulse energy
- Up to 20 W output power
- 76 MHz repetition rate
- No amplified spontaneous emission
- Industrial-grade design
- Optional automated second harmonic generator
- Optional CEP stabilization
- Optional repetition rate locking to an external source

FLINT oscillators are based on an Yb crystal pumped by a high-brightness laser diodes. Generation of femtosecond pulses is provided by Kerr lens mode-locking. Once started, mode-locking remains stable over a long period and is immune to minor mechanical impact. Oscillator cavity length can be adjusted using an optional piezo actuator. FLINT oscillators can also be equipped with carrier-envelope phase (CEP) stabilization and repetition rate locking to an external source.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>FL1-02</th>
<th>FL1-08</th>
<th>FL2-12</th>
<th>FL2-20</th>
<th>FL2-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum output power</td>
<td>2 W</td>
<td>8 W</td>
<td>12 W</td>
<td>20 W</td>
<td>2 W ¹⁾</td>
</tr>
<tr>
<td>Pulse duration ²⁾</td>
<td>< 100 fs</td>
<td>< 120 fs</td>
<td>< 120 fs</td>
<td>< 170 fs</td>
<td>30 ... 50 fs ³⁾</td>
</tr>
<tr>
<td>Maximum pulse energy ⁴⁾</td>
<td>26 nJ</td>
<td>105 nJ</td>
<td>157 nJ</td>
<td>260 nJ</td>
<td>26 nJ ⁵⁾</td>
</tr>
<tr>
<td>Repetition rate ⁶⁾</td>
<td>≈ 76 MHz ⁶⁾</td>
<td>≈ 76 MHz</td>
<td>≈ 76 MHz</td>
<td>≈ 76 MHz ⁵⁾</td>
<td></td>
</tr>
<tr>
<td>Center wavelength</td>
<td>1035 ± 10 nm</td>
<td>1030 ± 3 nm</td>
<td>1029 ± 3 nm</td>
<td>1026 ± 2 nm</td>
<td>1040 ± 10 nm</td>
</tr>
<tr>
<td>Pulse-to-pulse energy stability ⁷⁾</td>
<td>RMS deviation ⁸⁾ < 0.5% over 24 h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>Linear, horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam quality</td>
<td>TEM₀₀; M² < 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam pointing stability</td>
<td>< 10 μrad/°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal 2H generator</td>
<td>n/a</td>
<td>Optional; conversion efficiency > 30%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal attenuator</td>
<td>n/a</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHYSICAL DIMENSIONS

Laser head (L × W × H)	430 × 195 × 114 mm	542 × 322 × 146 mm
Power supply and chiller rack (L × W × H)	642 × 553 × 540 mm	642 × 553 × 673 mm
Chiller	Different options available. Contact sales@lightcon.com	

ENVIRONMENTAL & UTILITY REQUIREMENTS

Operating temperature	15 – 30 °C (air conditioning recommended)		
Relative humidity	< 80% (non-condensing)		
Electrical requirements	100 V AC, 7 A – 240 V AC, 3 A; 50 – 60 Hz	100 V AC, 12 A – 240 V AC, 5 A; 50 – 60 Hz	
Rated power	200 W		
Power consumption	100 W	150 W	
Power consumption (chiller)	200 W	800 W	200 W

¹⁾ Maximum output power and pulse energy depends on the chosen pulse duration, e.g., < 50 fs – 2 W, 26 nJ, < 40 fs – 1 W, 13 nJ.
²⁾ Assuming Gaussian pulse shape.
³⁾ Depends on repetition rate. Approximate values are given for 76 MHz repetition rate.
⁴⁾ Other repetition rates are available in the range from 60 to 100 MHz.
⁵⁾ Other repetition rates are available in the range from 70 to 80 MHz.
⁶⁾ Choice of a particular central wavelength with ±1 nm tolerance is available upon request.
⁷⁾ With enabled power lock, under stable environment.
⁸⁾ Normalized to average pulse energy, NRMSD.

DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT, REFLECTED OR SCATTERED RADIATION. CLASS 4 LASER PRODUCT
PERFORMANCE

Typical FLINT optical spectrum

FLINT-FL2-20 (20 W) output power stability under harsh environmental conditions

DRAWINGS

FLINT-FL1 drawing

FLINT-FL2 drawing

EXAMPLES OF INDUSTRIAL APPLICATIONS

FLINT OSCILLATORS

I-OPA OPTICAL PARAMETRIC AMPLIFIERS

CARBIDE LASERS

PHAROS LASERS

Typical FLINT optical spectrum

FLINT-FL2-20 (20 W) output power stability under harsh environmental conditions

FLINT-FL1 drawing

FLINT-FL2 drawing

NRMSD = 0.08%
EXAMPLES OF INDUSTRIAL APPLICATIONS

Brittle & highly thermal-sensitive material cutting

Multi-pass cadmium tungstate cutting. No cracks. All thermal trace effects eliminated.
Source: Micronanics Laser Solutions Centre.

Stainless steel stent cutting

Stent cut using CARBIDE laser.
Source: Amada Miyachi America.

Glass needle microdrilling

Glass needle microdrilling.
Source: Workshop of Photonics.

Steel drilling

Taperless hole microdrilling in stainless steel alloys.
Source: Workshop of Photonics.

Various type glass drilling

Various glass drilling.
Source: Workshop of Photonics.

Nanodrilling of fused silica

Longitudinal section of a single void.
Milling of complex 3D surfaces

3D milled sample in copper. Zoom in SEM image.

Selective Cr thin film ablation

Cr thin film ablation for creation of LiNbO₃ micro-disk resonator. (a,b) SEM images, (c) AFM image of micro-disk wedge, (d) optical images of micro-disk resonators with different diameters.

Terahertz broadband anti-reflection structures

Fabricated moth-eye 3D profile, taken by laser scanning microscope.

Friction and wear reduction

(a) Schematic of the laser treatment, (b) laser patterning strategy, (c) SEM image of induced LIPSS.

3D waveguides

3D waveguides fabricated in fused silica glass.
Source: Workshop of Photonics.

Surface-enhanced Raman scattering (SERS) sensors fabrication

SEM image of the Ti-6Al-4V (TC4) surface after irradiation with progressive laser scan.
Lab-on-chip channel ablation and welding

Welding of transparent polymers for sealing of microfluidic devices. Top view on a sealed microfluidic device (left), welding seam (bottom right).

Bragg grating waveguide (BGW) writing

(a) First-order Bragg gratings inscribed in waveguide, (b) Resonant spectral transmission of inscribed BGW.

Birefringent glass volume modifications

Form induced birefringence-retardance variation results in different colors in parallel polarized light.
Source: Workshop of Photonics.

3D micro printing using multi-photon polymerization

Various 3D structures fabricated in SZ2080 polymer using multi-photon polymerization – nanophotonic devices, microoptics, micromechanics.
Source: Femtika.

3D glass etching

Various structures fabricated in fused silica glass.
Source: Femtika.

3D multi-photon polymerization

Various 3D structures fabricated in SZ2080 polymer using multi-photon polymerization.
Source: Workshop of Photonics.
Polymer polishing

Polished curved surface and surface roughness measurements before and after polishing with GHz BiBurst.

QR code marking

High contrast QR codes markings on various samples. Size 3 × 3 mm. Sky-writing mode enabled.

Source: Light Conversion apps lab.

Color center creation

Illustration of the laser writing of color centers (left), silicon carbide containing arrays of laser-written color centers (right).

Stainless steel surface polishing

SEM image collage of structures ablated in stainless steel, before and after laser polishing. Typical micro-cone structure (bottom, left) and smoothing with GHz burst mode (right).

Glass cutting

Example of glass cutting. Source: Citrogene.

Precision parts cutting from brass

Example of gear cut from brass. Source: Lasea.
List of Local Distributors

AUSTRALIA
Lastek Pty Ltd
Thebarton, Australia
Phone: +61 8 84 438 668
alex.stanco@lastek.com.au
www.lastek.com.au

BENELUX COUNTRIES
Laser 2000
Vinkeveen, Netherlands
Phone: +32 11 75 79 87
dloos@laser2000.nl
www.laser2000.nl

BRAZIL
Photronics
São Paulo, Brazil
Phone: +55 11 2839-3209
info@photronics.com.br
www.photronics.com.br

CZECH REPUBLIC & SLOVAKIA
Femtonika s.r.o.
Zbyšov, Czech Republic
Phone: +420 792 417 400
jan.hubert@femtonika.cz
www.femtonika.cz

CHINA
LIGHT CONVERSION China
Shenzhen, China
Phone: +86 189 4874 5558
sales.china@cn.lightcon.com

BRILLIANT INSTRUMENTS TECHNOLOGY CO. LTD.
Beijing, China
Phone: +86 10 5126 2828
lij@mvlz.com
www.mvlz.com

GENUINE OPTRONICS LIMITED
Shanghai, China
Phone: +86 21 64 325 169
jye@gen-opt.com
www.gen-opt.com

FRANCE
Optoprim SAS Paris
Paris, France
Phone: +33 1 41 90 33 77
fbeck@optoprim.com
www.optoprim.com

FRANCE & SWITZERLAND
Marc Watremez
Industrial Market Development Manager
Phone: +33 609 16 9358
marc.w@lightcon.com

GERMANY
TOPAG Lasertechnik GmbH
Darmstadt, Germany
Phone: +49 6151 4259 78
info@topag.de
www.topag.de

GERMANY, AUSTRIA & SWITZERLAND
Ulrich Hoechner
Industrial Market Development Manager
Phone: +49 157 8202 5058
U.Hoechner@lightcon.com

INDIA
ANATECH Laser Instruments Pvt. Ltd.
Mumbai, India
Phone: +91 22 4121 0011 / 02
sales@anatechslaser.com
www.anatechslaser.com

ISRAEL
ROSH Electrotechnics Ltd
Natanya, Israel
Phone: +972 (0)9 862 7401
marcom@roshelop.co.il
www.roshelop.co.il

ITALY
Optoprim S.r.l.
Monza, Italy
Phone: +39 039 634 977
info@optoprim.it
www.optoprim.it

JAPAN
Phototechnica Corp.
Saitama, Japan
Phone: +81 48 871 0067
kkakuta@phototechnica.co.jp
www.phototechnica.co.jp

KOREA
LIGHT CONVERSION Korea
Daejeon, Korea
Phone: +82 42 368 1010
jungsik.seo@lightcon.com

POLAND
Amecam
Warszawa, Poland
Phone: +48 22 207 2278
amecam@amecam.pl
www.amecam.pl

RUSSIA
Promenergolab LLC
Moscow, Russia
Phone: +7 495 22 11 208
info@czl.ru
www.czl.ru

SINGAPORE
Acexon Technologies Pte Ltd
Singapore
Phone: +65 6565 7300
sales@acexon.com
www.acexon.com

SPAIN & PORTUGAL
INNOVA Scientific S.L.
Las Rozas de Madrid, Spain
Phone: +34 91 710 56 50
rafael.pereira@innovasci.com
www.innovasci.com

TAIWAN
Alaser
Taipei, Taiwan
Phone: +886 2 2377 3118
alexfu@alaser.com.tw
www.alaser.com.tw

UNITED KINGDOM
Photonic Solutions
Edinburgh, UK
Phone: +44 0 131 664 8122
ben.agate@photonicssolutions.co.uk
www.photonicssolutions.co.uk

USA
LIGHT CONVERSION USA
Bozeman, MT, USA
Phone: +1 866 658 5404
SalesLC@LightCon-USA.com
CARBIDE
Unibody-Design Industrial-Grade Femtosecond Lasers

FEATURES
- 190 fs – 20 ps tunable pulse duration
- 800 µJ maximum pulse energy
- 80 W maximum output power
- Single-shot – 2 MHz repetition rate
- Pulse picker for pulse-on-demand mode
- Industrial-grade design
- Air- or water-cooled models
- Optional automated harmonic generator

LIGHT CONVERSION CHINA
702-1, F1 Building, TCL Science Park, No.1001
Zhongshanyuan Road, Nanshan Dist., Shenzhen, China
Phone: +86 189 4874 5558
sales.china@cn.lightcon.com

LIGHT CONVERSION KOREA
520-ho, 65, Techno 3-ro,
Yuseong-gu, Daejeon, 34016, Korea
Phone: +82 42 368 1010
jungsik.seo@lightcon.com

LIGHT CONVERSION USA
201 South Wallace Ave., Suite B-2C
Bozeman, MT 59715, USA
Phone: +1 866 658 5404
Fax: +1 866 658 7357
SalesLC@LightCon-USA.com

Tel.: +370 5 2491830
Website: www.lightcon.com
Sales: sales@lightcon.com
Scientific Systems Support: support@lightcon.com
Lasers Support: lasers@lightcon.com