Wavelength-Tunable Sources for Yb Lasers

The highlight of wavelength-tunable sources is the ORPHEUS series of femtosecond optical parametric amplifiers (OPAs) for Yb lasers. ORPHEUS series enables operation at high repetition rates while maintaining the best properties of TOPAS series OPAs such as the wide tuning range from deep-UV to mid-IR and high output stability. Coupled with PHAROS or CARBIDE femtosecond laser, ORPHEUS makes an invaluable source for ultrafast spectroscopy, nonlinear microscopy, and a variety of other scientific applications. The latest addition, ORPHEUS-NEO, is a next generation OPA with exceptional stability and is equipped with multiple detectors for pump beam position tracking and continuous monitoring of output parameters; thus, it is an invaluable tool for the most demanding applications.

The list of wavelength-tunable sources also includes I-OPA, a compact industrial-grade OPA, and CRONUS-3P, an OPA-based ultrafast source with GDD control for advanced nonlinear microscopy. For more information on the latter, refer to microscopy systems.

ORPHEUS Comparison Table
Product 1) Max. pump power Pump pulse energy Tuning range Extended tuning range Pulse duration Special features
HP 80 W 20 – 800 µJ 640 – 1010 nm, 1050 – 2600 nm  320 – 2600 nm 120 – 250 fs

Continuous power monitoring and diagnostics

Exceptional output stability

ONE 80 W 20 – 800 µJ 1350 – 2000 nm, 2100 – 4500 nm 640 – 16000 nm 100 – 300 fs
  8 W 8 – 400 μJ 630 – 2600 nm 210 – 16000 nm 120 – 250 fs Cost effective
HP 80 W 8 – 400 μJ 190 – 16000 nm Fully automated
HE 80 W 400 – 2000 μJ 190 – 16000 nm High energy
  8 W 12 – 400 μJ 1350 – 2000 nm, 2100 – 4500 nm 1350 – 2000 nm, 2100 – 16000 nm 100 – 300 fs Cost effective
HP 80 W 12 – 400 μJ Fully automated
HE 80 W 400 – 2000 μJ High energy
UP 20 W 100 – 400 µJ 1450 – 2000 nm, 2100 – 4000 nm 1350 – 2000 nm, 2100 – 16000 nm < 100 fs For PHAROS-UP
  80 W 10 – 500 μJ 650 – 900 nm, 1200 – 2500 nm 325 – 2500 nm 25 – 100 fs 2) Optional GDD control 
  80 W 200 – 2000 μJ 2500 – 10000 nm 1350 – 15000 nm < 100 fs Broad-bandwidth mid-IR output
2H 8 W 10 – 200 μJ 650 – 900 nm 325 – 450 nm, 650 – 900 nm < 30 fs @ 700 – 850 nm Broad-bandwidth output
3H 8 W 12 – 200 μJ 520 – 900 nm 260 – 450 nm, 520 – 900 nm < 30 fs @ 530 – 670 nm
  60 W 16 – 2000 μJ 630 – 4500 nm 3) 210 – 16000 nm 3) Down to < 40 fs 3) Two independent outputs
  20 W 100 – 3200 μJ 640 – 1000 nm, 1060 – 2600 nm 210 – 4800 nm 1 – 3 ps Narrow-bandwidth output 
  1. Custom solutions are available; contact sales@lightcon.com for details.
  2. Typical. Long pulse mode is also available; see detailed specifications.
  3. Depends on configuration. Choose between ORPHEUSORPHEUS-F, and ORPHEUS-ONE configurations.
I-OPA Comparison Table
Product 1) Max. pump power Pump pulse energy Tuning range Extended tuning range Pulse duration Special features
I-OPA logo TW 1) HP 40 W 10 – 400 µJ 640 – 1010 nm,
1050 – 2600 nm
320 – 2600 nm 120 – 250 fs

Compact industrial-grade design

High output stability

F 650 – 900 nm,
1200 – 2500 nm
– 2) 25 – 100 fs
ONE 20 – 400 µJ 1350 – 2000 nm, 2100 – 4500 nm 1350 – 10000 nm 100 – 300 fs
  1. Fixed-wavelength models (I-OPA-FW) are also available; see specifications.
  2. Contact sales@lightcon.com for information.
  • 190 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 80 W pump power
  • Up to 2 mJ pump pulse energy
  • Completely automated
  • Tunable or fixed-wavelength models
  • Industrial-grade design
  • Plug-and-play installation and user-friendly operation
  • Single-shot – 2 MHz repetition rate
  • Up to 40 W pump power
  • < 100 fs pulse duration
  • High pulse energy, high repetition rate, high average power, and high output stability
  • 1250 – 1800 nm tuning range
  • Down to 50 fs pulse duration
  • Automated GDD control
  • Industrial-grade design
  • Combination of best OPA and NOPA features
  • 650 – 900 nm and 1200 – 2500 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • < 100 fs pulse duration
  • Adjustable spectral bandwidth
  • Long pulse mode for gap-free tunability
  • Up to 800 cm-1 spectral bandwidth
  • 2500 – 15 000 nm tuning range
  • < 100 fs pulse duration
  • Up to 400 kHz repetition rate
  • CEP-stable option
  • High conversion efficiency in MIR
  • 1350 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 80 W pump power
  • Up to 2 mJ pump pulse energy
  • < 30 fs pulse duration
  • Single-shot – 1 MHz repetition rate
  • Integrated prism compressor
  • Adjustable spectral bandwidth and pulse duration
  • Wavelength feedback with internal spectrometer
  • Two simultaneous and independent outputs
  • 210 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 60 W pump power
  • Up to 0.5 mJ pump pulse energy
  • CEP-stable option
  • 210 – 4800 nm tuning range
  • 800 fs – 3 ps pulse duration
  • < 20 cm-1 spectral bandwidth
  • Nearly bandwidth-limited output
  • Up to 100 kHz repetition rate
  • High output stability
  • 100 fs – 20 ps tunable pulse duration
  • 4 mJ maximum pulse energy
  • 20 W maximum output power
  • Single-shot – 1 MHz repetition rate
  • BiBurst
  • Automated harmonic generators (up to 5th harmonic)
  • 190 fs – 20 ps tunable pulse duration
  • 2 mJ maximum pulse energy
  • 80 W maximum output power
  • Single-shot – 2 MHz repetition rate
  • BiBurst
  • Air-cooled version

Charge Photogeneration and Recombination in Fluorine-Substituted Polymer Solar Cells

R. Hu, Y. Liu, J. Peng, J. Jiang, M. Qing, X. He, M. Huo, and W. Zhang, Frontiers in Chemistry 10 (2022).

Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping

Z. Qin, Z. She, C. Chen, W. Wu, J. K. Y. Lau, N. Y. Ip, and J. Y. Qu, Nature Biotechnology (2022).

Dopamine Photochemical Behaviour under UV Irradiation

A. Falamaş, A. Petran, A. Hada, and A. Bende, International Journal of Molecular Sciences 10 (23), 5483 (2022).

Electron–Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films

M. F. Lichtenegger, J. Drewniok, A. Bornschlegl, C. Lampe, A. Singldinger, N. A. Henke, and A. S. Urban, ACS Nano (2022).

Enhanced transfer efficiency of plasmonic hot-electron across Au/GaN interface by the piezo-phototronic effect

Y. Zhu, C. Deng, C. He, W. Zhao, Z. Chen, S. Li, K. Zhang, and X. Wang, Nano Energy 93, 106845 (2022).

Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis

D. Y. Jeong, D. S. Lee, H. L. Lee, S. Nah, J. Y. Lee, E. J. Cho, and Y. You, ACS Catalysis, 6047-6059 (2022).

Exciton-Like and Mid-Gap Absorption Dynamics of PtS in Resonant and Transparent Regions

J. Huang, N. Dong, N. McEvoy, L. Wang, H. Wang, and J. Wang, Laser &amp$\mathsemicolon$ Photonics Reviews, 2100654 (2022).

Highly Efficient Quasi-2D Green Perovskite Light-Emitting Diodes with Bifunctional Amino Acid

C. Liu, Y. Liu, S. Wang, J. Liang, C. Wang, F. Yao, W. Ke, Q. Lin, T. Wang, C. Tao et al., Advanced Optical Materials, 2200276 (2022).

Insight into perovskite light-emitting diodes based on PVP buffer layer

N. Jiang, Z. Wang, J. Hu, M. Liu, W. Niu, R. Zhang, F. Huang, and D. Chen, 241, 118515 (2022).

Intrachain photophysics of a donor–acceptor copolymer

H. Nho, W. Park, B. Lee, S. Kim, C. Yang, and O. Kwon, Physical Chemistry Chemical Physics 4 (24), 1982-1992 (2022).

1

2 3 4 5

...

29 Next

Femtosecond Laser Systems for Science

Product catalog.

Rev. 09/08/2022. Size 15.4 MB.

飞秒激光器飞秒科研系统

Product catalog in Chinese.

Rev. 09/08/2022. Size 16 MB.