Wavelength-Tunable Sources for Yb Lasers

The highlight of wavelength-tunable sources is the ORPHEUS series of femtosecond optical parametric amplifiers (OPAs) for Yb lasers. ORPHEUS series enables operation at high repetition rates while maintaining the best properties of TOPAS series OPAs such as the wide tuning range from deep-UV to mid-IR and high output stability. Coupled with PHAROS or CARBIDE femtosecond laser, ORPHEUS makes an invaluable source for ultrafast spectroscopy, nonlinear microscopy, and a variety of other scientific applications.

The list of wavelength-tunable sources has been recently extended by the addition of I-OPA, a compact industrial-grade OPA, and CRONUS-3P, an OPA-based ultrafast source with GDD control for advanced nonlinear microscopy. For more information on the latter, refer to microscopy systems.

ORPHEUS Comparison Table
Product 1) Max. pump power Pump pulse energy Tuning range Extended tuning range Pulse duration Special features
  8 W 8 – 400 μJ 630 – 2600 nm 210 – 16000 nm 120 – 250 fs Cost effective
HP 80 W 8 – 400 μJ 190 – 16000 nm Fully automated
HE 80 W 400 – 2000 μJ 190 – 16000 nm High energy
  8 W 12 – 400 μJ 1350 – 2000 nm, 2100 – 4500 nm 1350 – 2000 nm, 2100 – 16000 nm 100 – 300 fs Cost effective
HP 80 W 12 – 400 μJ Fully automated
HE 80 W 400 – 2000 μJ High energy
  80 W 10 – 500 μJ 650 – 900 nm, 1200 – 2500 nm 325 – 2500 nm 25 – 100 fs 2) Optional GDD control 
  80 W 200 – 2000 μJ 2500 – 10000 nm 1350 – 15000 nm < 100 fs Broad-bandwidth mid-IR output
2H 8 W 10 – 200 μJ 650 – 900 nm 325 – 450 nm, 650 – 900 nm < 30 fs @ 700 – 850 nm Broad-bandwidth output
3H 8 W 12 – 200 μJ 520 – 900 nm 260 – 450 nm, 520 – 900 nm < 30 fs @ 530 – 670 nm
  60 W 16 – 2000 μJ 630 – 4500 nm 3) 210 – 16000 nm 3) Down to < 40 fs 3) Two independent outputs
  20 W 100 – 3200 μJ 640 – 1000 nm, 1060 – 2600 nm 210 – 4800 nm 1 – 3 ps Narrow-bandwidth output 
  1. Custom solutions are available; contact sales@lightcon.com for details.
  2. Typical. Long pulse mode is also available; see detailed specifications.
  3. Depends on configuration. Choose between ORPHEUSORPHEUS-F, and ORPHEUS-ONE configurations.
I-OPA Comparison Table
Product 1) Max. pump power Pump pulse energy Tuning range Extended tuning range Pulse duration Special features
I-OPA logo TW 1) HP 40 W 10 – 400 µJ 640 – 1010 nm,
1050 – 2600 nm
320 – 2600 nm 120 – 250 fs

Compact industrial-grade design

High output stability

F 650 – 900 nm,
1200 – 2500 nm
– 2) 25 – 100 fs
ONE 20 – 400 µJ 1350 – 2000 nm, 2100 – 4500 nm 1350 – 10000 nm 100 – 300 fs
  1. Fixed-wavelength models (I-OPA-FW) are also available; see specifications.
  2. Contact sales@lightcon.com for information.
  • 190 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 80 W pump power
  • Up to 2 mJ pump pulse energy
  • Completely automated
  • Tunable or fixed-wavelength models
  • Industrial-grade design
  • Plug-and-play installation and user-friendly operation
  • Single-shot – 2 MHz repetition rate
  • Up to 40 W pump power
  • < 100 fs pulse duration
  • High pulse energy, high repetition rate, and high average power
  • 1250 – 1800 nm tuning range
  • Down to 50 fs pulse duration
  • Automated GDD control
  • Industrial-grade design
  • High output stability
  • Combination of best OPA and NOPA features
  • 650 – 900 nm and 1200 – 2500 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • < 100 fs pulse duration
  • Adjustable spectral bandwidth
  • Long pulse mode for gap-free tunability
  • Up to 800 cm-1 spectral bandwidth
  • 2500 – 15 000 nm tuning range
  • < 100 fs pulse duration
  • Up to 400 kHz repetition rate
  • CEP-stable option
  • High conversion efficiency in mid‑IR
  • 1350 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 80 W pump power
  • Up to 2 mJ pump pulse energy
  • < 30 fs pulse duration
  • Single-shot – 1 MHz repetition rate
  • Integrated prism compressor
  • Adjustable spectral bandwidth and pulse duration
  • Wavelength feedback with internal spectrometer
  • Two simultaneous and independent outputs
  • 210 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 60 W pump power
  • Up to 0.5 mJ pump pulse energy
  • CEP-stable option
  • 210 – 4800 nm tuning range
  • 1 – 4 ps pulse duration
  • < 20 cm-1 spectral bandwidth
  • Nearly bandwidth-limited output
  • Up to 100 kHz repetition rate
  • High output stability
  • 100 fs – 20 ps tunable pulse duration
  • 3 mJ maximum pulse energy
  • 20 W maximum output power
  • Single-shot – 1 MHz repetition rate
  • BiBurst
  • Automated harmonic generators (up to 5th harmonic)
  • 190 fs – 20 ps tunable pulse duration
  • 2 mJ maximum pulse energy
  • 80 W maximum output power
  • Single-shot – 2 MHz repetition rate
  • Air-cooled version
  • Automated harmonic generators

Insight into perovskite light-emitting diodes based on PVP buffer layer

N. Jiang, Z. Wang, J. Hu, M. Liu, W. Niu, R. Zhang, F. Huang, and D. Chen, 241, 118515 (2022).

Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation

F. A. Baptista, D. Krizsan, M. Stitch, I. V. Sazanovich, I. P. Clark, M. Towrie, C. Long, L. Martinez‑Fernandez, R. Improta, N. A. P. Kane‑Maguire et al., (2021).

All-optical sampling of few-cycle infrared pulses using tunneling in a solid

Y. Liu, S. Gholam‑Mirzaei, J. E. Beetar, J. Nesper, A. Yousif, M. Nrisimhamurty, and M. Chini, Photonics Research 6 (9), 929 (2021).

An ultrafast vibrational study of dynamical heterogeneity in the protic ionic liquid ethyl-ammonium nitrate. I. Room temperature dynamics

C. A. Johnson, A. W. Parker, P. M. Donaldson, and S. Garrett‑Roe, The Journal of Chemical Physics 13 (154), 134502 (2021).

Charge photogeneration and recombination in ternary polymer solar cells based on compatible acceptors

R. Hu, W. Zhang, Z. Xiao, J. Zhang, X. Su, G. Wang, J. Chen, X. He, and R. Wang, Journal of Materials Science 25 (56), 14181-14195 (2021).

Comparison of growth interruption and temperature variation impact on emission efficiency in blue InGaN/GaN MQWs

J. Mickevičius, K. Nomeika, M. Dmukauskas, A. Kadys, S. Nargelas, and R. Aleksiejūnas, Vacuum 183, 109871 (2021).

Direct correlation of local fluence to single-pulse ultrashort laser ablated morphology

H. Sakurai, K. Konishi, H. Tamaru, J. Yumoto, and M. Kuwata‑Gonokami, Communications Materials 1 (2) (2021).

Direct focus sensing and shaping for high-resolution multi-photon imaging in deep tissue

Z. Qin, Z. She, C. Chen, W. Wu, J. K. Y. Lau, N. Y. Ip, and J. Y. Qu, (2021).

Double Charge Transfer Dominates in Carrier Localization in Low Bandgap Sites of Heterogeneous Lead Halide Perovskites

A. Fakharuddin, M. Franckevičius, A. Devižis, A. Gelžinis, J. Chmeliov, P. Heremans, and V. Gulbinas, Advanced Functional Materials 15 (31), 2010076 (2021).

1

2 3 4 5

...

27 Next

Femtosecond Laser Systems for Science

Product catalog.

Rev. 05/01/2022. Size 14.7 MB.

飞秒激光器飞秒科研系统

Product catalog in Chinese.

Rev. 03/05/2021. Size 12.5 MB.