Laser Sources for Nonlinear Microscopy

LIGHT CONVERSION product portfolio with recently released microscopy-dedicated femtosecond laser sources, CRONUS-2P and CRONUS-3P, covers applications in functional neuroimaging, optogenetics, and deep imaging using medium-repetition-rate three-photon excitation and fast high‑repetition-rate two-photon imaging, as well as widefield and holographic excitation using high-power laser sources. See the CRONUS series comparison table below, while the complete list of laser sources for nonlinear microscopy and examples of the state-of-the-art applications are available in our latest brochure.

CRONUS Comparison Table
Product Outputs Output power Repetition rate Pulse duration Power stability
CRONUS-2P 680 – 960 nm,
960 – 1300 nm,
and 1025 nm 1)
> 3 W @ 920 nm
> 2.5 W @ 1025 nm
> 2.5 W @ 1100 nm
77 ± 1 MHz < 160 fs < 1% 5)
CRONUS-3P logo 1250 – 1800 nm 2) 3) > 1.1 W @ 1300 nm 4)
> 0.8 W @ 1700 nm 4)
Up to 2 MHz < 50 fs @ 1300 nm
< 65 fs @ 1700 nm
  1. Up to three simultaneous and synchronized outputs for multibeam excitation. For fixed-wavelength 1040 nm laser refer to FLINT.
  2. For dual output refer to ORPHEUS-TWINS in ORPHEUS-F configuration.
  3. Alternative configuration with additional 920 nm output is available, contact
  4. At 1 MHz repetition rate. Lower repetition rate and higher pulse energy options available.
  5. Expressed as NRMSD (normalized root mean squared deviation).
  • High pulse energy for deep imaging
  • 1250 – 1800 nm tuning range for 3P imaging
  • Down to 50 fs pulse duration for high peak power
  • Automated wavelength and GDD control for optimal signal
  • Market-leading pulse-to-pulse energy stability
  • Watt-level output at high repetition rate for fast imaging
  • Two tunable and one fixed output for simultaneous multibeam excitation
  • Automated GDD control for shortest pulses at the sample
  • Industrial-grade design for high power and beam stability
  • Repetition rate from 10 to 100 MHz
  • Down to 50 fs pulse duration
  • High-power models, up to 20 W
  • High-energy energy models, up to 0.6 µJ
  • Industrial-grade design for high output stability
  • CEP stabilization or repetition rate locking
  • Tunable pulse duration, 100 fs – 20 ps
  • Maximum pulse energy of up to 4 mJ
  • Down to < 100 fs right at the output
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • CEP stabilization or repetition rate locking
  • Thermally-stabilized and sealed design
  • Wavelength tunability in an industrial design
  • Single-box solution
  • Tunable or fixed-wavelength models
  • Plug-and-play installation and robust performance
  • The most compact OPA in the market
  • Combination of best collinear and non-collinear OPA features
  • Ultrashort pulses in NIR (650 – 900 nm and 1200 – 2500 nm)
  • Single-shot – 2 MHz repetition rate
  • < 100 fs pulse duration
  • Adjustable spectral bandwidth
  • Optional long pulse mode for gap-free tunability
  • Two simultaneous independently tunable outputs
  • 210 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 60 W, 0.5 mJ pump
  • Compact and cost-effective
  • CEP-stable option
  • Tunable pulse duration, 190 fs – 20 ps
  • Maximum output of 120 W and 2 mJ
  • Single-shot – 2 MHz repetition rate
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • Air-cooled model
  • Compact industrial-grade design

3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration

D. Samsonas, E. Skliutas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Berzinš, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis et al., Nanophotonics 0 (0) (2023).

Effect of tissue fixation on the optical properties of structural components assessed by non-linear microscopy imaging

M. A. Markus, D. P. Ferrari, F. Alves, and F. Ramos‑Gomes, Biomedical Optics Express 8 (14), 3988 (2023).

We need to talk about laser pulse energy stability

L. Kontenis, M. Urbšas, J. Berzinš, and K. Neimontas, in Multiphoton Microscopy in the Biomedical Sciences XXIII, A. Periasamy, P. T. So et al., eds. (SPIE, 2023).

X-photon laser direct write 3D nanolithography

E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Berzinš, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis et al., Virtual and Physical Prototyping 1 (18) (2023).

Ketogenic diet uncovers differential metabolic plasticity of brain cells

T. Düking, L. Spieth, S. A. Berghoff, L. Piepkorn, A. M. Schmidke, M. Mitkovski, N. Kannaiyan, L. Hosang, P. Scholz, A. H. Shaib et al., Science Advances 37 (8) (2022).

Exploring two-photon optogenetics beyond 1100~nm for specific and effective all-optical physiology

T. Fu, I. Arnoux, J. Döring, H. Backhaus, H. Watari, I. Stasevicius, W. Fan, and A. Stroh, iScience 3 (24), 102184 (2021).

Label-free imaging of age-related cardiac structural changes in non-human primates using multiphoton nonlinear microscopy

A. Khan, F. Ramos‑Gomes, A. Markus, M. Mietsch, R. Hinkel, and F. Alves, Biomedical Optics Express 11 (12), 7009 (2021).

Laser Sources for Nonlinear Microscopy

Product catalog.

Rev. 04/09/2023. Size 5.3 MB.

Examples of Microscopy Applications

Application examples.

Rev. 21/08/2023. Size 3.7 MB.

Femtosecond Laser Systems for Science

Product catalog.

Rev. 04/09/2023. Size 16.6 MB.


Product catalog in Chinese.

Rev. 22/07/2023. Size 16.6 MB.

Processing Error

An error occured while processing request. Please reload window and try again. On repeated errors please contact

Error code: