Collinear Optical Parametric Amplifier TOPAS-PRIME

  • 189 nm – 20 μm tuning range
  • Up to 6 mJ pump pulse energy
  • > 25% conversion efficiency
  • High output stability
  • CEP stabilization of Idler
  • Fresh pump channel for improved temporal and spatial properties of sum-frequency options

Features

  • 189 nm – 20 μm tuning range
  • Up to 6 mJ pump pulse energy
  • > 25% conversion efficiency
  • High output stability
  • CEP stabilization of Idler
  • Fresh pump channel for improved temporal and spatial properties of sum-frequency options

TOPAS-PRIME is a collinear femtosecond optical parametric amplifier designed for Ti:Sapphire lasers.

The standard TOPAS-PRIME model accepts pump pulse energy of up to 3.5 mJ @ 20 – 70 fs (up to 4 mJ @ 70 – 200 fs), while TOPAS-PRIME-PLUS accepts higher pump pulse energy, up to 6 mJ @ 70 – 200 fs. Both models come with wavelength extension options, covering a wavelength range from 189 nm to 20 μm.

TOPAS-PRIME and TOPAS-PRIME-PLUS specifications are given for the following pump laser parameters:

  • 800 nm wavelength
  • 1 mJ pulse energy
  • 1 kHz repetition rate
  • 30 – 40 fs pulse duration
  • Gaussian beam

Note 1: Specifications depend on pump wavelength and pulse duration. If they differ from the values above, contact  sales@lightcon.com.

Note 2: TOPAS-PRIME output pulse energy scales linearly in 1 – 5 mJ range, provided the device is installed and optimized for particular pump energy. The device has to be re-optimized if the pump energy changes more than 10% from the installation value.

Model TOPAS‑PRIME TOPAS‑PRIME‑PLUS
Pump wavelength 770 – 830 nm
Pump pulse duration (FWHM) 20 – 70 fs
Pump pulse energy 0.15 – 3.5 mJ 0.15 – 5 mJ
Repetition rate < 25 kHz 1)
Maximum pump power 25 W 2)
Polarization Horizontal
Spectral bandwidth < 1.2× transform limit
Pulse-to-pulse energy stability < 1 % RMS deviation 3)
Pulse duration stability < 1 % pulse-to-pulse 4)
Pulse front tilt < 10% of pulse duration
Pulse contrast < 1 : 20
Beam quality (M2) < 1.3 5)
Beam astigmatism < 0.15 6)
Beam spatial profile Gaussian – Super Gaussian
Intensity modulation < 15%, no hotspots 7)
Beam pointing stability < 10 μrad 8)
Beam divergence < 1.2× diffraction limit
Beam height from optical table 125 – 185 mm
Beam diameter (1/e2) < 11 mm 9)
  1. Maximum repetition rate for DFG1 (NDFG1) option is 1 kHz.
  2. Contact sales@lightcon.com for higher pump power options.
  3. Normalized to average pulse energy, NRMSD.
  4. Normalized to average pulse duration, NRMSD.
  5. M2 specification valid for Gaussian beam.
  6. Normalized astigmatism – difference of the waist positions, divided by Rayleigh length.
  7. Normalized to Gaussian or Super-Gaussian fits, NRMSD.
  8. NRMSD, full angle.
  9. Optional external telescope can be ordered for the beam diameter of 11 – 28 mm.
Model TOPAS-PRIME TOPAS-PRIME-PLUS
Tuning range 1160 – 1600 nm (Signal)
1600 – 2600 nm (Idler)
Conversion efficiency at peak
(Signal and Idler combined)
> 25%
Pulse duration (1 – 1.5)× pump pulse duration @ 1160 – 1550 nm
< 2× pump pulse duration @ 1550 – 2600 nm
Time-bandwidth product < 1
Polarization Vertical (Signal)
Horizontal (Idler)
Pulse-to-pulse energy stability < 3% RMS deviation 1) @ 1160 – 1550 nm
  1. Normalized to average pulse energy, NRMSD.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage(s)
Control Fully automated Manual change of wavelength separators
Maximum tuning range 240 – 1160 nm 189 – 1160 nm 240 – 1160 nm
Housing Monolithic housing No common housing
Number of output ports Single Four 1)
Available with product TOPAS‑PRIME TOPAS‑PRIME 2) and TOPAS‑PRIME‑PLUS 3) TOPAS‑PRIME
  1. Output ports are wavelength-dependent.
  2. Special NIRUVIS‑DUV housing in case of DUV option extending down to 189 nm.
  3. Special NIRUVIS-DUV-HE housing in case of DUV option extending down to 189 nm.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
SHI Tuning range 800 – 1160 nm
Conversion efficiency at peak > 2% 1) > 1.5%
Pulse duration (1 – 1.5)× pump pulse duration
Polarization Vertical
SHS Tuning range 580 – 800 nm
Conversion efficiency at peak > 3% 2)
Pulse duration (1 – 1.5)× pump pulse duration @ 620 – 800 nm
Polarization Vertical Horizontal 3) Horizontal
  1. > 1.2% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  2. > 2.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  3. Vertical for NIRUVIS‑DUV.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
Fresh pump option Always Optional
SFI Tuning range 533 – 600 nm
Conversion efficiency at peak > 3% 1)
SFS Tuning range 475 – 533 nm
Conversion efficiency at peak > 4% 2)
Pulse duration (1 – 1.5)× pump pulse duration
Beam shape Near-Gaussian with fresh pump option; not specified otherwise
Time-bandwidth < 1 with fresh pump option; not specified otherwise
Polarization Vertical
  1. > 2.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  2. > 3% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
FHI Tuning range  400 – 480 nm
Conversion efficiency at peak > 0.4% 1) > 0.25%
Pulse duration (1.2 – 2)× pump pulse duration
Polarization Horizontal
FHS Tuning range 290 – 400 nm
Conversion efficiency at peak > 0.5%
Pulse duration (1.2 – 2)× pump pulse duration
Polarization Horizontal Vertical 2) Vertical
  1. > 2.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  2. Horizontal for NIRUVIS‑DUV.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
SH of SFI Tuning range 266 – 295 nm
Conversion efficiency at peak > 0.3% 1)
Pulse duration (1.2 – 2)× pump pulse duration
Polarization Horizontal
SH of
SFS
Tuning range 240 – 266 nm
Conversion efficiency at peak > 0.3% 1)
Pulse duration < 3× pump pulse duration
Polarization Horizontal
  1. > 0.2% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
Extension NIRUVIS‑DUV / NIRUVIS-DUV-HE
  Pump + FHS Pump + SH of SFI Pump + SH of SFS 
Tuning range  215 – 240 nm 200 – 215 nm 189 – 200 nm
Conversion efficiency at peak > 0.1% 1) Not specified
Polarization Vertical
  1. Assuming 15% of pump pulse energy into DUV channel and another 15% into fresh pump channel.
Extension DFG1 / NDFG1W 1) NDFG1K 2) DFG2 / NDFG2
Tuning range 2.6 – 9 μm 2.6 – 4.5 μm 4 – 15 μm
Conversion efficiency at peak > 0.2% > 0.4% > 0.2%
Pulse duration < 3× pump pulse duration Not specified
Polarization Horizontal
  1. Maximum pump repetition rate – 1 kHz; crystal life time of 1000 – 2000 h.
  2. Not available in collinear configuration.

TOPAS-PRIME and TOPAS-PRIME-PLUS specifications are given for the following pump laser parameters:

  • 800 nm wavelength
  • 1 mJ pulse energy
  • 1 kHz repetition rate
  • 100 – 150 fs pulse duration
  • Gaussian beam

Note 1: Specifications depend on pump wavelength and pulse duration. If they differ from the values above, contact sales@lightcon.com.

Note 2: TOPAS-PRIME output pulse energy scales linearly in 1 – 6 mJ range, provided the device is installed and optimized for particular pump energy. The device has to be re-optimized if the pump energy changes more than 10% from the installation value.

Model TOPAS‑PRIME TOPAS‑PRIME‑PLUS
Pump wavelength 770 – 830 nm
Pump pulse duration (FWHM) 70 – 200 fs
Pump pulse energy 0.15 – 4 mJ 0.15 – 6 mJ
Repetition rate < 25 kHz 1)
Maximum pump power 25 W 2)
Polarization Horizontal
Spectral bandwidth < 1.2× transform limit
Pulse-to-pulse energy stability < 1% RMS deviation 3)
Stability of pulse duration < 1% pulse-to-pulse 4)
Pulse front tilt < 10% of pulse duration
Pulse contrast < 1 : 20
Beam quality (M2) < 1.3 5)
Beam astigmatism < 0.15 6)
Input beam spatial profile Gaussian – Super Gaussian
Intensity modulation < 15%, no hot spots 7)
Beam pointing stability < 10 μrad 8)
Beam divergence < 1.2× diffraction limit
Beam height from optical table 125 – 185 mm 
Beam diameter (1/e2) < 11 mm 9)
  1. Maximum repetition rate for DFG1 (NDFG1) option is 1 kHz.
  2. Contact sales@lightcon.com for higher pump power options.
  3. Normalized to average pulse energy, NRMSD
  4. Normalized to average pulse duration, NRMSD.
  5. M2 specification valid for Gaussian beam.
  6. Normalized astigmatism – difference of the waist positions, divided by Rayleigh length.
  7. Normalized to Gaussian or Super-Gaussian fits, NRMSD.
  8. NRMSD, full angle.
  9. Optional external telescope can be ordered for the beam diameter of 11 – 28 mm.
Model TOPAS-PRIME TOPAS-PRIME-PLUS
Tuning range 1160 – 1600 nm (Signal)
1600 – 2600 nm (Idler)
Conversion efficiency at peak
(Signal and Idler combined)
> 25%
Pulse duration (0.7 – 1)× pump pulse duration
Time-bandwidth product < 1
Polarization Vertical (Signal)
Horizontal (Idler)
Pulse-to-pulse energy stability < 2% RMS deviation 1) @ 1160 – 1550 nm
  1. Normalized to average pulse energy, NRMSD.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage(s)
Control Fully automated Manual change of wavelength separators
Maximum tuning range 240 – 1160 nm 189 – 1160 nm 240 – 1160 nm
Housing Monolithic housing No common housing
Number of output ports Single Four 1)
Available with product line TOPAS-PRIME TOPAS-PRIME 2) and
TOPAS-PRIME‑PLUS 3)
TOPAS-PRIME
  1. Output ports are wavelength-dependent.
  2. Special NIRUVIS‑DUV housing in case of DUV option extending down to 189 nm.
  3. Special NIRUVIS-DUV-HE housing in case of DUV option extending down to 189 nm.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
SHI Tuning range 800 – 1160 nm
Conversion efficiency at peak > 5% 1) > 1.5%
Pulse duration (0.7 – 1)× pump pulse duration
Polarization Vertical
SHS Tuning range 580 – 800 nm
Conversion efficiency at peak > 8% 2)
Pulse duration (0.7 – 1)× pump pulse duration
Polarization Vertical Horizontal 3) Horizontal
  1. > 2.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  2. > 6.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  3. Vertical for NIRUVIS‑DUV.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
Fresh pump option Always Optional
SFI
 
Tuning range 533 – 600 nm
Conversion efficiency at peak > 5% 1)
Pulse duration (0.7 – 1)× pump pulse duration
SFS
 
Tuning range 475 – 533 nm
Conversion efficiency at peak > 7% 2)
Pulse duration (0.8 – 1.2)× pump pulse duration
Beam shape Near-Gaussian with fresh pump option; not specified otherwise
Time-bandwidth < 1 with fresh pump option; not specified otherwise
Polarization Vertical
  1. > 4% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  2. > 5.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
FHI Tuning range  400 – 480 nm
Conversion efficiency at peak > 1.5% 1) > 0.6%
Pulse duration (0.7 – 1)× pump pulse duration
Polarization Horizontal
FHS Tuning range 290 – 400 nm
Conversion efficiency at peak > 1.5%
Pulse duration (0.8 – 1.2)× pump pulse duration
Polarization Horizontal Vertical 2) Vertical
  1. > 0.6% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
  2. Horizontal for NIRUVIS‑DUV.
Extension Automated NIRUVIS Standard NIRUVIS Separate mixer stage
SH of SFI Tuning range 266 – 295 nm
Conversion efficiency at peak > 0.7% 1)
Pulse duration (0.8 – 1.2)× pump pulse duration
Polarization Horizontal
SH of
SFS
Tuning range 240 – 266 nm
Conversion efficiency at peak > 0.8% 1)
Pulse duration < 1.5× pump pulse duration
Polarization Horizontal
  1. > 0.5% at peak with NIRUVIS‑DUV, due to additional pump pulse energy into DUV option.
Extension NIRUVIS‑DUV / NIRUVIS-DUV-HE
  Pump + FHS Pump + SH of SFI Pump + SH of SFS 
Tuning range  215 – 240 nm 200 – 215 nm 189 – 200 nm
Conversion efficiency at peak > 0.3% 1) Not specified
Polarization Vertical
  1. Assuming 15% of pump pulse energy into DUV channel and another 15% into fresh pump channel.
Extension DFG1 / NDFG1W 1) NDFG1K 2) DFG2 / NDFG2 
Tuning range 2.6 – 11 μm 2.6 – 4.9 μm 4 – 20 μm
Conversion efficiency at peak > 0.8% > 1% > 0.6%
Pulse duration < 2× pump pulse duration Not specified
Polarization Horizontal
  1. Maximum pump repetition rate – 1 kHz; crystal life time of 1000 – 2000 h.
  2. Not available in collinear configuration.

TOPAS Idler (1600 – 2600 nm) is passively CEP locked due to a three-wave interaction. However, a slow CEP drift may persist because of changes in pump beam pointing or environmental conditions. Such a drift can be compensated by employing an f-2f interferometer and a feedback loop controlling the temporal delay between seed and pump in the power amplification stage of TOPAS-PRIME and TOPAS-PRIME-HE.

In-plane oriented CH3NH3PbI3 nanowire suppress the interface electron transfer to PCBM

T. Wang, Z. Yu, H. Huang, W. Kong, W. Dang, and X. Zhao, Chinese Physics B (2021).

An Insight into the Excitation States of Small Molecular Semiconductor Y6

X. Zou, G. Wen, R. Hu, G. Dong, C. Zhang, W. Zhang, H. Huang, and W. Dang, Molecules 18 (25), 4118 (2020).

Femtosecond streaking in ambient air

A. Korobenko, K. Johnston, M. Kubullek, L. Arissian, Z. Dube, T. Wang, M. Kübel, A. Y. Naumov, D. M. Villeneuve, M. F. Kling et al., Optica 10 (7), 1372 (2020).

Hydrogen Bond Exchange and Ca2+Binding of AqueousN-Methylacetamide Revealed by 2DIR Spectroscopy

O. M. Cracchiolo, D. K. Geremia, S. A. Corcelli, and A. L. Serrano, The Journal of Physical Chemistry B 32 (124), 6947-6954 (2020).

Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface

X. Luo, Y. Han, Z. Chen, Y. Li, G. Liang, X. Liu, T. Ding, C. Nie, M. Wang, F. N. Castellano et al., Nature Communications 1 (11) (2020).

Efficient Photosensitizing Capabilities and Ultrafast Carrier Dynamics of Doped Carbon Dots

S. Mondal, A. Yucknovsky, K. Akulov, N. Ghorai, T. Schwartz, H. N. Ghosh, and N. Amdursky, Journal of the American Chemical Society 38 (141), 15413-15422 (2019).

Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands

Y. An, Y. Liu, H. Bian, Z. Wang, P. Wang, Z. Zheng, Y. Dai, M. Whangbo, and B. Huang, Science Bulletin 20 (64), 1502-1509 (2019).

Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy

O. Selig, A. V. Cunha, M. B. van Eldijk, J. C. M. van Hest, T. L. C. Jansen, H. J. Bakker, and Y. L. A. Rezus, The Journal of Physical Chemistry B 34 (122), 8243-8254 (2018).

Transmittance and phase matching of BBO crystal in the 3-5 µm range and its application for the characterization of mid-infrared laser pulses

G. Tamošauskas, G. Beresnevičius, D. Gadonas, and A. Dubietis, Optical Materials Express 6 (8), 1410 (2018).

Interplay of Ion–Water and Water–Water Interactions within the Hydration Shells of Nitrate and Carbonate Directly Probed with 2D IR Spectroscopy

J. A. Fournier, W. Carpenter, L. D. Marco, and A. Tokmakoff, Journal of the American Chemical Society 30 (138), 9634-9645 (2016).

TOPAS Optical Parametric Amplifiers for Ti:Sapphire Lasers

Product datasheet.

Rev. 21/08/2023. Size 271 KB.

Femtosecond Laser Systems for Science

Product catalog.

Rev. 04/09/2023. Size 16.6 MB.

飞秒激光器飞秒科研系统

Product catalog in Chinese.

Rev. 22/07/2023. Size 16.6 MB.

Processing Error

An error occured while processing request. Please reload window and try again. On repeated errors please contact sales@lightcon.com

Error code: