Mid-Infrared Collinear Optical Parametric Amplifier ORPHEUS-ONE

  • High conversion efficiency in MIR
  • 1350 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 80 W pump power
  • Up to 2 mJ pump pulse energy

Features

  • High conversion efficiency in MIR
  • 1350 – 16000 nm tuning range
  • Single-shot – 2 MHz repetition rate
  • Up to 80 W pump power
  • Up to 2 mJ pump pulse energy

ORPHEUS-ONE is an optical parametric amplifier (OPA) designed for the mid-infrared (MIR) spectral range from 1350 to 16000 nm. Compared to ORPHEUS-HP, it has fewer wavelength extension options but provides higher pump laser conversion efficiency into MIR.

Three models of ORPHEUS-ONE offer the same tuning range, are reliable and easy to use, but vary based on the design automation and pump parameters. The basic ORPHEUS-ONE model is a cost-effective choice but is limited to 8 W pump power. The ORPHEUS-ONE-HP enables up to 80 W pump power, while the ORPHEUS-ONE-HE accepts the same pump power but also pulse energy of up to 2 mJ. Finally, the most recent addition is the ORPHEUS-ONE-UP that is optimized for the PHAROS-UP ultrashort-pulse laser with pump pulse duration down to < 100 fs.

The spectral bandwidth of ORPHEUS-ONE output is defined by the pump laser pulses; thus, for sum-frequency generation (SFG) spectroscopy and other applications requiring broad-bandwidth infrared pulses – refer to ORPHEUS-MIR.

Model ORPHEUS-ONE ORPHEUS-ONE-HP ORPHEUS-ONE-HE ORPHEUS-ONE-UP 1)
Tuning range 1350 – 2000 nm (Signal)
2100 – 4500 nm (Idler)
1450 – 2000 nm (Signal)
2100 – 4000 nm (Idler)
Maximum pump power 8 W 80 W 20 W
Pump pulse energy 12 – 400 µJ 400 – 2000 µJ 100 – 400 µJ
Conversion efficiency at peak 2)
(Signal @ 1550 nm)
> 9%, 30 – 2000 µJ pump
> 6%, 12 – 30 µJ pump
> 9%
Spectral bandwidth 60 – 150 cm-1 @ 1450 – 2000 nm 150 – 250 cm-1
@ 1500 – 1900 nm
& 2200 – 3500 nm
Long-term power stability, 8 h 3) < 2% @ 1550 nm
Pulse-to-pulse energy stability, 1 min 3) < 2% @ 1550 nm
  1. For PHAROS-UP only, see more details in pump laser requirements below.
  2. Specified as percentage of pump power.
  3. Expressed as NRMSD (normalized root mean squared deviation).
Model ORPHEUS-ONE ORPHEUS-ONE-HP ORPHEUS-ONE-HE ORPHEUS-ONE-UP 1)
Tuning range 4500 – 16000 nm (DFG) 4000 – 16000 nm (DFG)
Conversion efficiency 2) > 0.3% @ 10000 nm, 30 – 2000 µJ pump
> 0.2% @ 10000 nm, 12 – 30 µJ pump
> 0.1% @ 10000 nm
Spectral bandwidth 60 – 150 cm-1
@ 5000 – 8000 nm
60 – 120 cm-1 @ 5000 – 8000 nm 150 – 250 cm-1
@ 4000 – 12000 nm
  1. For PHAROS-UP only, see more details in pump laser requirements below.
  2. Specified as percentage of pump power.
Model ORPHEUS-ONE ORPHEUS-ONE-HP ORPHEUS-ONE-HE ORPHEUS-ONE-UP
Pump laser PHAROS or CARBIDE PHAROS-UP
Center wavelength 1030 ± 10 nm
Maximum pump power 8 W 80 W 20 W
Maximum repetition rate 600 kHz 2 MHz 200 kHz
Pump pulse energy 12 – 400 µJ 400 – 2000 µJ 100 – 400 µJ
Pulse duration 1) 180 – 300 fs < 100 fs
  1. FWHM, assuming Gaussian pulse shape.

Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation

F. A. Baptista, D. Krizsan, M. Stitch, I. V. Sazanovich, I. P. Clark, M. Towrie, C. Long, L. Martinez‑Fernandez, R. Improta, N. A. P. Kane‑Maguire et al., (2021).

All-optical sampling of few-cycle infrared pulses using tunneling in a solid

Y. Liu, S. Gholam‑Mirzaei, J. E. Beetar, J. Nesper, A. Yousif, M. Nrisimhamurty, and M. Chini, Photonics Research 6 (9), 929 (2021).

An ultrafast vibrational study of dynamical heterogeneity in the protic ionic liquid ethyl-ammonium nitrate. I. Room temperature dynamics

C. A. Johnson, A. W. Parker, P. M. Donaldson, and S. Garrett‑Roe, The Journal of Chemical Physics 13 (154), 134502 (2021).

In Situ Spectroscopic Probing of Polarity and Molecular Configuration at Aerosol Particle Surfaces

Y. Qian, G. Deng, and Y. Rao, The Journal of Physical Chemistry Letters 16 (11), 6763-6771 (2020).

Robust Binding of Disulfide-Substituted Rhenium Bipyridyl Complexes for CO2 Reduction on Gold Electrodes

M. Cattaneo, F. Guo, H. R. Kelly, P. E. Videla, L. Kiefer, S. Gebre, A. Ge, Q. Liu, S. Wu, T. Lian et al., Frontiers in Chemistry 8 (2020).

Slowing Down of the Molecular Reorientation of Water in Concentrated Alkaline Solutions

R. Cota, E. P. van Dam, S. Woutersen, and H. J. Bakker, The Journal of Physical Chemistry B 38 (124), 8309-8316 (2020).

Heavily Doped Semiconductor Colloidal Nanocrystals as Ultra-Broadband Switches for Near-Infrared and Mid-Infrared Pulse Lasers

R. Wei, X. Tian, H. Luo, M. Liu, Z. Yang, Z. Luo, H. Zhu, H. Guo, J. Li, and J. Qiu, ACS Applied Materials & Interfaces 43 (11), 40416-40423 (2019).

Plasmonic Effects of Au Nanoparticles on the Vibrational Sum Frequency Spectrum of 4-Nitrothiophenol

M. Linke, M. Hille, M. Lackner, L. Schumacher, S. Schlücker, and E. Hasselbrink, The Journal of Physical Chemistry C 39 (123), 24234-24242 (2019).

1

2 Next

Femtosecond Laser Systems for Science

Product catalog.

Rev. 12/07/2022. Size 15.4 MB.

飞秒激光器飞秒科研系统

Product catalog in Chinese.

Rev. 21/07/2022. Size 16 MB.