Broad-Bandwidth Mid-Infrared Optical Parametric Amplifier ORPHEUS-MIR

  • Up to 800 cm-1 spectral bandwidth
  • 2500 – 15 000 nm tuning range
  • < 100 fs pulse duration
  • Up to 400 kHz repetition rate
  • Up to 80 W, 2 mJ pump
  • Short-pulse high-energy output at 2000 nm
  • Optimization for bandwidth
  • CEP-stable option

Features

  • Up to 800 cm-1 spectral bandwidth
  • 2500 – 15 000 nm tuning range
  • < 100 fs pulse duration
  • Up to 400 kHz repetition rate
  • Up to 80 W, 2 mJ pump
  • Short-pulse high-energy output at 2000 nm
  • Optimization for bandwidth
  • CEP-stable option

ORPHEUS-MIR is an optical parametric amplifier (OPA) optimized for the efficient generation of broad-bandwidth MIR pulses. The laser system provides broadband pulses in the tuning range of 2.5 – 10 μm and reaches up to 15 μm with a narrow-bandwidth extension. Due to the novel system design, ORPHEUS-MIR provides < 100 fs pulses directly at the output. Signal and Idler outputs are available simultaneously. The system architecture is well-suited for high-energy and high-power PHAROS and CARBIDE femtosecond pump lasers.

ORPHEUS-MIR serves as an excellent high-repetition-rate source for infrared spectroscopy such as broadband vibrational sum-frequency generation (SFG) spectroscopy. Combined with a narrow-bandwidth output of SHBC, it forms a compact laser system for SFG measurements, covering most of the MIR spectrum while also providing high spectral resolution. Furthermore, its high output stability is the key to fast and high-quality SFG imaging.

  • Broadband vibrational sum-frequency generation (SFG) spectroscopy
  • Time- and angle-resolved photoemission spectroscopy (TR-ARPES)
  • Two-dimensional infrared (2D IR) spectroscopy
  • High-harmonic generation (HHG) in solids
  • Other infrared spectroscopy and high-energy physics applications
Model ORPHEUS-MIR
Mode of operation Standard Optimized for bandwidth 1)
Tuning range 2 500 – 4 000 nm (Signal)
4 000 – 10 000 nm (Idler)
Maximum pump power 80 W
Pump pulse energy 200 µJ – 2 mJ
Pulse duration < 100 fs
Conversion efficiency 2) > 1.2% @ 3 000 nm
> 1.0% @ 3 500 nm
> 0.6% @ 5 000 nm
> 0.3% @ 9 000 nm > 0.2% @ 9 000 nm
Spectral bandwidth 3) > 300 cm-1 @ 2 500 – 4 000 nm
> 200 cm-1 @ 4 000 – 8 000 nm
> 200 cm-1 @ 8 000 – 10 000 nm > 350 cm-1 @ 8 000 – 10 000 nm
Long-term power stability, 8 h 4) < 2% @ 5 000 nm
Pulse-to-pulse energy stability, 1 min 4) < 2% @ 5 000 nm
  1. Optional mode of operation. Optimized for maximum spectral bandwidth at expense of conversion efficiency.
  2. Specified as a percentage of pump power.
  3. FWHM (full width at half maximum).
  4. Expressed as NRMSD (normalized root mean squared deviation).
Model ORPHEUS-MIR
Output wavelength 1) 2000 ± 100 nm
Pulse duration < 50 fs
Conversion efficiency 2) > 8%
Spectral bandwidth > 350 cm-1
  1. Not tunable, optimized for best overall performance. Not simultaneous to OPA output.
  2. Specified as a percentage of pump power.
Model ORPHEUS-MIR
Tuning range 1) 1 350 – 2 000 nm
Pulse duration < 300 fs
Conversion efficiency 2) Contact sales@lightcon.com
Spectral bandwidth 60 – 150 cm-1
  1. Simultaneous to OPA output. Available on request.
  2. Specified as a percentage of pump power.
Model ORPHEUS-MIR
Tuning range 10 000 – 15 000 nm
Pulse duration < 300 fs
Conversion efficiency 1) > 0.2% @ 12 000 nm
Spectral bandwidth 100 – 150 cm-1
  1. Specified as a percentage of pump power.
Model ORPHEUS-MIR
Pump laser PHAROS or CARBIDE
Center wavelength 1030 ± 10 nm
Maximum pump power  80 W
Repetition rate Single-shot – 400 kHz
Pump pulse energy 400 µJ – 2 mJ
Pulse duration 1) 180 – 300 fs
  1. FWHM, assuming Gaussian pulse shape.

Broadband Multidimensional Spectroscopy Identifies the Amide II Vibrations in Silkworm Films

A. S. Chatterley, P. Laity, C. Holland, T. Weidner, S. Woutersen, and G. Giubertoni, Molecules 19 (27), 6275 (2022).

Measuring Protein Conformation at Aqueous Interfaces with 2D Infrared Spectroscopy of Emulsions

A. S. Chatterley, T. W. Golbek, and T. Weidner, The Journal of Physical Chemistry Letters 31 (13), 7191-7196 (2022).

Peptide Orientation at Emulsion Nanointerfaces Dramatically Different from Flat Surfaces

T. W. Golbek, K. Strunge, A. S. Chatterley, and T. Weidner, The Journal of Physical Chemistry Letters 46 (13), 10858-10862 (2022).

Structure and Orientation of the SARS-Coronavirus-2 Spike Protein at Air–Water Interfaces

M. Bregnhøj, S. J. Roeters, A. S. Chatterley, F. Madzharova, R. Mertig, J. S. Pedersen, and T. Weidner, The Journal of Physical Chemistry B 18 (126), 3425-3430 (2022).

Electrostatics Trigger Interfacial Self-Assembly of Bacterial Ice Nucleators

F. Madzharova, M. Bregnhøj, A. S. Chatterley, K. B. Løvschall, T. Drace, L. S. A. Dreyer, T. Boesen, and T. Weidner, Biomacromolecules 2 (23), 505-512 (2021).

Broadband Mid-Infrared Source Tunable through 3-11pm Based on Yb-doped Laser and Dual OPA Setup

R. Budriunas, K. Jurkus, and A. Varanavicius, in Conference on Lasers and Electro-Optics, (OSA, 2020).

Femtosecond Laser Systems for Science

Product catalog.

Rev. 16/09/2022. Size 15.2 MB.

飞秒激光器飞秒科研系统

Product catalog in Chinese.

Rev. 16/09/2022. Size 15.8 MB.