Femtosecond Fluorescence Upconversion and TCSPC Module HARPIA-TF

  • Femtosecond-to-microsecond measurements
  • Automated switching between fluorescence upconversion and TCSPC
  • Automated spectral scanning and calibration
  • Optional operation as a stand-alone unit


  • Femtosecond-to-microsecond measurements
  • Automated switching between fluorescence upconversion and TCSPC
  • Automated spectral scanning and calibration
  • Optional operation as a stand-alone unit

The HARPIA-TF is a time-resolved fluorescence measurement module that combines fluorescence upconversion and TCSPC techniques. In fluorescence upconversion, the signal from the sample is mixed in a nonlinear crystal with a gating femtosecond pulse to achieve high temporal resolution, which is limited by the duration of the gate and pump pulses. For fluorescence decay times in the nanosecond to microsecond range, the instrument can be used in time-correlated single‑photon counting (TCSPC) mode to measure kinetic traces up to 5 μs. The combination of the two methods enables the measurement of spectrally-resolved fluorescence decay in the femtosecond to microsecond range. Using a high repetition rate PHAROS or CARBIDE laser, the fluorescence dynamics can be measured while exciting the samples with pulse energies down to several nanojoules.

Spectral range 1) 300 – 1600 nm
Spectral resolution 2) ≈ 100 cm-1
Delay range 2 ns / 4 ns / 8 ns
Delay resolution 2.1 fs / 4.2 fs / 8.3 fs
Temporal resolution < 1.4× pump or gate pulse duration, whichever is longer
SNR 3) 65 : 1
  1. Depends on the gating source, full range covered with different nonlinear crystals.
  2. Limited by the spectral bandwidth of the gating pulse.
  3. Estimated as the standard deviation of a set of 100 points at 50 ps intervals measured in Rhodamine 6G dye at an upconverted wavelength of 360 nm using a PHAROS laser running at 150 kHz repetition rate; assuming 0.5 s averaging per point. Not applicable to all samples and configurations.
Spectral range 1) 320 – 820 nm
TCSPC detector 2) Standard High-speed
Temporal resolution < 180 ps < 50 ps
Maximum measurement range 3) 5 μs
SNR 4) 100 : 1
  1. Spectral range is extendable to NIR; contact sales@lightcon.com for details.
  2. Different models available; contact sales@lightcon.com for details.
  3. Maximum measurement range can be extended with a phosphorescence upgrade.
  4. Estimated by fitting a kinetic trace measured in Rhodamine 6G solution at 580 nm with multiple exponents, subtracting the fit from the data and taking the ratio between the standard deviation of the residuals and the 0.5× maximum signal value, at 250 kHz repetition rate; assuming 5 s averaging per trace. Not applicable to all samples and configurations.
Physical dimensions (L × W × H) 1) 571 × 275 × 183 mm
  1. Without external spectrograph.

Dopamine Photochemical Behaviour under UV Irradiation

A. Falamaş, A. Petran, A. Hada, and A. Bende, International Journal of Molecular Sciences 10 (23), 5483 (2022).

Electron–Hole Binding Governs Carrier Transport in Halide Perovskite Nanocrystal Thin Films

M. F. Lichtenegger, J. Drewniok, A. Bornschlegl, C. Lampe, A. Singldinger, N. A. Henke, and A. S. Urban, ACS Nano (2022).

Intrachain photophysics of a donor–acceptor copolymer

H. Nho, W. Park, B. Lee, S. Kim, C. Yang, and O. Kwon, Physical Chemistry Chemical Physics 4 (24), 1982-1992 (2022).

Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO2 Reduction

J. Zeng, X. Wang, B. Xie, Q. Li, and X. Zhang, Journal of the American Chemical Society 3 (144), 1218-1231 (2022).

Novel Synthetic Dopamine Analogues: Carbon-13/Nitrogen-15 Isotopic Labeling and Fluorescence Properties

C. Lar, S. Radu, E. Gál, A. Fălămaş, J. Szücs‑Balázs, C. Filip, and A. Petran, Analytical Letters, 1-13 (2022).

Size-dependent spectroscopic insight into the steady-state and time-resolved optical properties of ZnO photocatalysts

A. Falamas, I. Marica, A. Popa, D. Toloman, S. Pruneanu, F. Pogacean, F. Nekvapil, T. D. Silipas, and M. Stefan, Materials Science in Semiconductor Processing 145, 106644 (2022).

Light-Modulated Cationic and Anionic Transport Across Protein Biopolymers

A. Burnstine‑Townley, S. Mondal, Y. Agam, R. Nandi, and N. Amdursky, (2021).

Long-range light-modulated charge transport across the molecular heterostructure doped protein biopolymers

S. Mondal, N. Ghorai, S. Bhunia, H. N. Ghosh, and N. Amdursky, Chemical Science (2021).


2 3 4 Next

HARPIA-TF Femtosecond Fluorescence Upconversion and TCSPC Module

Product datasheet.

Rev. 05/01/2022. Size 395 KB.

HARPIA Comprehensive Spectroscopy System


Rev. 07/04/2022. Size 8 MB.

HARPIA Selection guide

HARPIA components selection guide.

Rev. 14/11/2021. Size 1.1 MB.

Femtosecond Laser Systems for Science

Product catalog.

Rev. 09/08/2022. Size 15.4 MB.


Product catalog in Chinese.

Rev. 09/08/2022. Size 16 MB.