Femtosecond Fluorescence Upconversion and TCSPC Module HARPIA-TF

  • Femtosecond-to-microsecond measurements
  • Automated switching between fluorescence upconversion and TCSPC
  • Automated spectral scanning and calibration
  • Optional operation as a stand-alone unit

Features

  • Femtosecond-to-microsecond measurements
  • Automated switching between fluorescence upconversion and TCSPC
  • Automated spectral scanning and calibration
  • Optional operation as a stand-alone unit

The HARPIA-TF is a time-resolved fluorescence measurement module that combines fluorescence upconversion and TCSPC techniques. In fluorescence upconversion, the signal from the sample is mixed in a nonlinear crystal with a gating femtosecond pulse to achieve high temporal resolution, which is limited by the duration of the gate and pump pulses. For fluorescence decay times in the nanosecond to microsecond range, the instrument can be used in time-correlated single‑photon counting (TCSPC) mode to measure kinetic traces up to 5 μs. The combination of the two methods enables the measurement of spectrally-resolved fluorescence decay in the femtosecond to microsecond range. Using a high repetition rate PHAROS or CARBIDE laser, the fluorescence dynamics can be measured while exciting the samples with pulse energies down to several nanojoules.

Model HARPIA-TF
Spectral range 1) 300 – 1600 nm
Spectral resolution 2) ≈ 100 cm-1
Delay range 2 ns / 4 ns / 8 ns
Delay resolution 2.1 fs / 4.2 fs / 8.3 fs
Temporal resolution < 1.4× pump or gate pulse duration, whichever is longer
SNR 3) 65 : 1
  1. Depends on the gating source, full range covered with different nonlinear crystals.
  2. Limited by the spectral bandwidth of the gating pulse.
  3. Estimated as the standard deviation of a set of 100 points at 50 ps intervals measured in Rhodamine 6G dye at an upconverted wavelength of 360 nm using a PHAROS laser running at 150 kHz repetition rate; assuming 0.5 s averaging per point. Not applicable to all samples and configurations.
Model HARPIA-TF
Spectral range 1) 320 – 820 nm
TCSPC detector 2) Standard High-speed
Temporal resolution < 180 ps < 50 ps
Maximum measurement range 3) 5 μs
SNR 4) 100 : 1
  1. Spectral range is extendable to NIR; contact sales@lightcon.com for details.
  2. Different models available; contact sales@lightcon.com for details.
  3. Maximum measurement range can be extended with a phosphorescence upgrade.
  4. Estimated by fitting a kinetic trace measured in Rhodamine 6G solution at 580 nm with multiple exponents, subtracting the fit from the data and taking the ratio between the standard deviation of the residuals and the 0.5× maximum signal value, at 250 kHz repetition rate; assuming 5 s averaging per trace. Not applicable to all samples and configurations.
Model HARPIA-TF
Physical dimensions (L × W × H) 1) 571 × 275 × 183 mm
  1. Without external spectrograph.

Light-Modulated Cationic and Anionic Transport Across Protein Biopolymers

A. Burnstine‑Townley, S. Mondal, Y. Agam, R. Nandi, and N. Amdursky, (2021).

Long-range light-modulated charge transport across the molecular heterostructure doped protein biopolymers

S. Mondal, N. Ghorai, S. Bhunia, H. N. Ghosh, and N. Amdursky, Chemical Science (2021).

A Tandem 0D/2D/2D NbS 2 Quantum Dot/Nb 2 O 5 Nanosheet/g-C 3 N 4 Flake System with Spatial Charge–Transfer Cascades for Boosting Photocatalytic Hydrogen Evolution

B. Lin, Z. Chen, P. Song, H. Liu, L. Kang, J. Di, X. Luo, L. Chen, C. Xue, B. Ma et al., Small 42 (16), 2003302 (2020).

Efficient Exciton Diffusion in Organic Bilayer Heterojunctions with Nonfullerene Small Molecular Acceptors

T. H. Lee, S. Y. Park, W. Park, X. Du, J. H. Son, N. Li, O. Kwon, H. Y. Woo, C. J. Brabec, and J. Y. Kim, ACS Energy Letters 5 (5), 1628-1635 (2020).

Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers

S. Mondal, Y. Agam, R. Nandi, and N. Amdursky, Chemical Science 13 (11), 3547-3556 (2020).

Hydrogen-Bond Free Energy of Local Biological Water

W. Park, K. M. Lee, B. S. Lee, Y. J. Kim, S. H. Joo, S. K. Kwak, T. H. Yoo, and O. Kwon, Angewandte Chemie 18 (132), 7155-7162 (2020).

1

2 3 Next

HARPIA-TF Fluorescence Upconversion and TCSPC Module

Product datasheet.

Rev. 14/11/2021. Size 395 KB.

HARPIA Comprehensive Spectroscopy System

Product datasheet.

Rev. 14/11/2021. Size 7 MB.

HARPIA Selection guide

HARPIA components selection guide.

Rev. 14/11/2021. Size 1.1 MB.

Femtosecond Laser Systems for Science

Product catalog.

Rev. 14/11/2021. Size 12.6 MB.

飞秒激光器飞秒科研系统

Product catalog in Chinese.

Rev. 03/05/2021. Size 12.5 MB.