Unibody-Design Industrial-Grade Femtosecond Lasers CARBIDE Lasers

  • 190 fs – 20 ps tunable pulse duration
  • 800 μJ maximum pulse energy
  • 80 W maximum output power
  • Single-shot – 2 MHz repetition rate
  • Pulse picker for pulse-on-demand mode
  • Industrial-grade design
  • Air- or water-cooled models
  • Optional automated harmonic generator
  • Optional scientific interface module


  • 190 fs – 20 ps tunable pulse duration
  • 800 μJ maximum pulse energy
  • 80 W maximum output power
  • Single-shot – 2 MHz repetition rate
  • Pulse picker for pulse-on-demand mode
  • Industrial-grade design
  • Air- or water-cooled models
  • Optional automated harmonic generator
  • Optional scientific interface module

CARBIDE is a series of femtosecond lasers combining high average power and excellent power stability. CARBIDE features market-leading output parameters without compromises to beam quality and stability. A compact and robust optomechanical CARBIDE design allows a variety of applications in top-class research centers, as well as display, automotive, LED, medical, and other industries. The reliability of CARBIDE has been proven by hundreds of systems operating 24/7 in the industrial environment.

The tunability of CARBIDE lasers enables our customers to discover the most efficient manufacturing processes. Tunable parameters include pulse duration (190 fs – 20 ps), repetition rate (single-shot – 2 MHz), pulse energy (up to 0.8 mJ), and average power (up to 80 W). A pulse-on-demand mode is available using the built-in pulse picker. The CARBIDE lasers can be equipped with industrial-grade modules.

Model CB3-20W CB3-40W CB3-80W CB5 CB5-SP
Cooling method Water-cooled Air-cooled 1)
Maximum output power 20 W 40 W 80 W 6 W 5 W
Pulse duration 2) < 250 fs < 290 fs < 190 fs
Pulse duration tuning range 250 fs – 10 ps 290 fs – 20 ps 190 fs – 20 ps
Maximum pulse energy 0.4 mJ 0.8 mJ 100 µJ 83 µJ 100 µJ
Repetition rate Single-shot – 1 MHz Single-shot – 1 MHz
(2 MHz on request)
Single-shot – 2 MHz Single-shot – 1 MHz
Pulse selection Single-shot, pulse-on-demand, any fundamental repetition rate division
Center wavelength 3) 1030 ± 10 nm
Polarization Linear, vertical; 1 : 1000
Beam quality TEM00; M2 < 1.2
Beam diameter 4) 2.5 mm 2.7 mm 1.4 mm
Pulse-to-pulse energy stability 5) RMS deviation 6) < 0.5% over 24 h
Long-term power stability RMS deviation 6) < 0.5% over 100 h
Beam pointing stability < 20 µrad/°C
Pulse picker FEC 7) Included Included 8) Included
Pulse picker leakage < 0.5 % < 2 % < 0.1 % < 2 %
  1. Water-cooled version available on request.
  2. Assuming Gaussian pulse shape.
  3. Precise wavelengths for specific models available upon request.
  4. FWHM, measured at laser output, using maximum pulse energy.
  5. Under stable environmental conditions.
  6. Normalized to average pulse energy, NRMSD.
  7. Provides fast energy control; external analog control input available. Response time – next available RA pulse.
  8. Enhanced contrast AOM. Provides fast amplitude control of output pulse train.
Model CB3-20W CB3-40W CB3-80W CB5 CB5-SP
Harmonics generator Integrated, optional
Output wavelength 515 nm, 343 nm, or 257 nm
Optical parametric amplifier Integrated, optional
Tuning range 320 – 10 000 nm
BiBurst option Tunable GHz and MHz burst with burst-in-burst capability, optional n/a
Intra burst pulse period 1) 440 ± 40 ps
Number of pulses, P 2) 1 … 10
Intra burst pulse period ≈ 15 ns
Number of pulses, N 1 … 10
  1. Custom spacing is available on request.
  2. Maximum number of pulses in a burst depends on the laser repetition rate. Custom number of pulses is available on request.
Model CB3-20W CB3-40W CB3-80W CB5 CB5-SP
Laser head (L × W × H) 632 × 305 × 173 mm 631 × 324 × 167 mm
Chiller (L × W × H) 680 × 484 × 307 mm Not required
24 V DC power supply (L × W × H) 280 × 144 × 49 mm 320 × 200 × 75 mm 220 × 95 × 46 mm
Model CB3-20W CB3-40W CB3-80W CB5 CB5-SP
Operating temperature 15 – 30 °C (59 – 86 °F) 17 – 27 °C (62 – 80 °F)
Relative humidity < 80% (non-condensing)
Electrical requirements 100 V AC, 7 A – 240 V AC, 3 A;
50 – 60 Hz
100 V AC, 12 A –
240 V AC, 5 A;
50 – 60 Hz
100 V AC, 3 A – 240 V AC, 1.3 A;
50 – 60 Hz
Rated power 600 W 1000 W 300 W
Power consumption 500 W 700 W 150 W
Electrical requirements (chiller) 100 – 230 V AC;
50 – 60 Hz
200 – 230 V AC;
50 – 60 Hz
Not required
Rated power (chiller) 1400 W 2000 W
Power consumption (chiller) 1000 W 1300 W

CARBIDE-CB3 lasers have an option for tunable GHz and MHz burst with burst-in-burst capability – called BiBurst. In standard mode, a single pulse is emitted at some fixed frequency. In burst mode, the output consists of pulse packets instead of single pulses. Each packet consists of a certain number of equally separated pulses. MHz-Burst contains N pulses with a nanosecond period, GHz-Burst contains P pulses with a picosecond period. If both bursts are used, the equally separated pulse packets contain sub-packets of pulses (burst-in-burst, BiBurst).

CARBIDE lasers equipped with automated harmonic generators (HGs) provide a selection of fundamental (1030 nm), second (515 nm), third (343 nm), or fourth (257 nm) harmonic outputs using software control. HGs are perfect for industrial applications that require a
single-wavelength output. Modules, mounted directly at the output of the laser, are fully integrated into the system.

The industrial-grade optical parametric amplifier I-OPA series marks a new era of simplicity in the world of tunable wavelength femtosecond light sources. Based on over 10 years of experience producing the ORPHEUS series of optical parametric amplifiers, this solution brings together the tunability of wavelength with the robust industrial-grade design. The I-OPA is a rugged module attachable to CARBIDE lasers, providing long-term stability comparable to that of the industrial-grade harmonic generators.

The CARBIDE scientific interface module extends the versatility of the industrial-grade laser and makes it particularly attractive to scientific applications. This module incorporates multiple options such as a simultaneous or separate oscillator output, a second compressed or uncompressed laser output, and seeding by an external oscillator. For example, using it, the CARBIDE laser can be seeded by an oscillator from another CARBIDE laser, thus ensuring a precise optical synchronization between the two lasers. All the aforementioned outputs can be equipped with automated power attenuators. All options are compatible in between.

All-optical sampling of few-cycle infrared pulses using tunneling in a solid

Y. Liu, S. Gholam‑Mirzaei, J. E. Beetar, J. Nesper, A. Yousif, M. Nrisimhamurty, and M. Chini, Photonics Research 6 (9), 929 (2021).

An Improved Transwell Design for Microelectrode Ion-Flux Measurements

B. Buchroithner, P. Spurný, S. Mayr, J. Heitz, D. Sivun, J. Jacak, and J. Ludwig, Micromachines 3 (12), 273 (2021).

Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses

Z. Li, X. Li, F. Yu, Q. Chen, Z. Tian, and H. Sun, Optics Letters 3 (46), 520 (2021).

Direct focus sensing and shaping for high-resolution multi-photon imaging in deep tissue

Z. Qin, Z. She, C. Chen, W. Wu, J. K. Y. Lau, N. Y. Ip, and J. Y. Qu, (2021).

Focal spot optimization through scattering media in multiphoton lithography

B. Buchegger, A. Haghofer, D. Höglinger, J. Jacak, S. Winkler, and A. Hochreiner, Optics and Lasers in Engineering 142, 106607 (2021).

Functional surface formation by efficient laser ablation using single-pulse and burst-modes

A. Žemaitis, M. Gaidys, J. Mikšys, P. Gečys, and M. Gedvilas, in Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVI, C. Molpeceres, A. Narazaki et al., eds. (SPIE, 2021).

Optimization of the ablation process using ultrashort pulsed laser radiation in different burst modes

D. Metzner, P. Lickschat, and S. Weißmantel, Journal of Laser Applications 1 (33), 012057 (2021).

3D multiphoton lithography using biocompatible polymers with specific mechanical properties

B. Buchroithner, D. Hartmann, S. Mayr, Y. J. Oh, D. Sivun, A. Karner, B. Buchegger, T. Griesser, P. Hinterdorfer, T. A. Klar et al., Nanoscale Advances 6 (2), 2422-2428 (2020).

Coherent interaction between free electrons and a photonic cavity

K. Wang, R. Dahan, M. Shentcis, Y. Kauffmann, A. B. Hayun, O. Reinhardt, S. Tsesses, and I. Kaminer, Nature 7810 (582), 50-54 (2020).


2 3 Next

CARBIDE Unibody-Design Industrial-Grade Femtosecond Lasers

Product datasheet.

Rev. 21/04/2021. Size 411 KB.

Automated Harmonic Generators for CARBIDE Lasers

Product datasheet.

Rev. 06/09/2021. Size 144 KB.

I-OPA Industrial-Grade Optical Parametric Amplifier

Product datasheet.

Rev. 21/08/2021. Size 516 KB.

Tunable GHz and MHz Burst with Burst-in-Burst Capability

Product datasheet.

Rev. 18/02/2021. Size 95 KB.

Scientific Interface Module for CARBIDE SCI-M

Product datasheet.

Rev. 06/09/2021. Size 107 KB.

Femtosecond Laser Systems for Science

Product catalog.

Rev. 27/08/2021. Size 12.3 MB.

Femtosecond Lasers for Industry

Product catalog.

Rev. 27/08/2021. Size 2.7 MB.

Examples of Industrial Applications

Applications examples.

Rev. 16/03/2021. Size 645 KB.


Product catalog in Chinese.

Rev. 03/05/2021. Size 12.5 MB.

Femtosecond Lasers for Industry

Product catalogue in Korean. 제품 카탈로그.

Rev. 27/08/2021. Size 2.8 MB.