Microscopy Sources

Product Catalog

lightcon.com

LIGHT CONVERSION is a global leader in ultrafast technology, designing and manufacturing:

- > Femtosecond Lasers,
- > Wavelength-Tunable Sources,
- > OPCPA Systems,
- > Microscopy Sources,
- > Spectroscopy Systems.

The comprehensive portfolio represents the best-in-class lasers tailored for industry, science, and medicine.

About Us

Founded in 1994, LIGHT CONVERSION has evolved into a leading company in ultrafast laser technology with over 9000 systems installed worldwide and 600 employees, 15% of whom focus on R&D. The company's lasers are used in all of the top 50 universities worldwide, highlighting its commitment to state-of-the-art research, while also ensuring the reliability and performance in 24/7 industrial applications. With international offices in the US, China, and Korea, along with a global representative network, the company ensures worldwide sales and service.

Contents

5 Microscopy Sources

ĈRONUS | 2P

6 Three-Channel Wavelength-Tunable Femtosecond Laser

ĈRONUS | 3P

8 Laser Source for Advanced Nonlinear Microscopy

11 Wavelength-Tunable Sources

I-OPA

12 Industrial-Grade Optical Parametric Amplifier

ORPHEUS | F

14 Broad-Bandwidth Hybrid Optical Parametric Amplifier

ORPHEUS | TWINS

16 Dual Optical Parametric Amplifier

¹⁹ Femtosecond Lasers

FLINT

20 High-Repetition-Rate Lasers

PHAROS

22 Modular-Design Femtosecond Lasers for Industry and Science

ÇARBIDE

26 Unibody-Design Femtosecond Lasers for Industry and Science

31 Nonlinear Microscopy Applications

³⁶ Global Representative Network

Microscopy Sources

The CRONUS femtosecond lasers cover applications in functional neuroimaging, optogenetics, and deep imaging, using medium-repetition-rate three-photon (3P) excitation and fast high-repetition-rate twophoton (2P) imaging, as well as widefield and holographic excitation.

ĈRONUS 2P	Three-channel laser with a high repetition rate for simultaneous 2P excitation of multiple fluorescent probes, calcium indicators, opsins or CARS and SRS.	
ĈRONUS 3P	Turn-key laser source with µJ-level pulses, covering the biological transparency windows at 1300 and 1700 nm for 3P microscopy and 1030 nm for optogenetic stimulation.	

Optimized for advanced multiphoton microscopy

Plug-and-play functionality with automated wavelength and dispersion control Excellent long-term power and pulse-to-pulse stability

ĈRONUS | 2P

Three-Channel Wavelength-Tunable Femtosecond Laser

CRONUS-2P tuning curve

CRONUS-2P GDD control range

CRONUS-2P relative intensity noise (RIN)

CRONUS-2P typical output power stability at 900 nm

Specifications

Model	CRONUS-2P			
	Output A	Output B	Output C	
Tuning range 1)	680 – 960 nm	940 – 1300 nm	1025 ± 10 nm (fixed)	
Output power ^{2) 3)}	> 3 W @ 920 nm	> 2.5 W @ 1100 nm	> 2.5 W	
Pulse duration ^{4) 5)}		< 160 fs		
Repetition rate		77 ±1 MHz		
Beam quality, M ^{2 3) 4)}		<1.2		
Polarization	Linear, horizontal			
Beam divergence, full angle	<1 mrad		< 1.5 mrad	
Beam diameter ⁴⁾ (1/e ²)	3.0 ± 0.4 mm 3.2 ± 0.4 mm		2.8 ± 0.4 mm	
Beam ellipticity 4)	> 0.8			
Beam astigmatism 4)	<20%			
Beam pointing stability 6)	< 200 µrad		n/a	
Long-term power stability, 24 h ⁴⁾⁷⁾	<1%			
GDD control range	-10 000 to -35 000 fs ² @ 700 nm -3 000 to -20 000 fs ² @ 800 nm 0 to -10 000 fs ² @ 920 nm	0 to –10 000 fs² @ 960 nm –3 000 to –10 000 fs² @ 1100 nm –8 000 to –12 000 fs² @ 1300 nm	n/a	

OPTIONAL POWER CONTROL

Tuning range ⁸⁾	680 – 960 nm	940 – 1300 nm	1025 ± 10 nm (fixed)	
Output power ⁹⁾	> 2 W @ 920 nm	> 2 W @ 1100 nm	> 1.5 W	
Rise/fall time 10)		< 300 ns		
Contrast ratio		1000:1		
GDD control range	0 to -6 500 fs ² @ 920 nm 0 to -10 000 fs ² @ 1100 nm n/a			
OPTIONAL WAVELENGTH EXTENSIONS (UV - VIS)				

Second harmonic tuning range	340 – 480 nm ¹¹⁾	480 – 650 nm ¹¹⁾	
Conversion efficiency at peak	>3	0%	n/a

ENVIRONMENTAL REQUIREMENTS & DIMENSIONS

$^{\scriptscriptstyle \eta}$ Configuration with dual-output A or dual-output B is also available.

- ²⁾ Simultaneous mode: > 1 W @ 920 nm, > 1 W @ 1100 nm,
- and > 2.5 W @ 1025 nm.
- $^{\scriptscriptstyle 3)}~$ Power control using AOM is applicable, specifications below.
- ⁴⁾ Speficied at 920 nm, 1100 nm, and 1025 nm, respectively.
- ⁵⁾ IR pulse duration determined assuming sech2 shape.
- $^{\scriptscriptstyle 6)}\,$ Beam pointing deviation over the entire tuning and GDD control range.
- ⁷⁾ Expressed as normalized root mean squared deviation (NRMSD);

Refer to www.lightcon.com

- ⁸⁾ Configuration with dual-output A or dual-output B is
- ⁹⁾ Simultaneous mode: > 0.7 W @ 920 nm, > 0.7 W @ 1100 nm,
- ¹⁰⁾ Specified from 5% to 95%.
- ¹⁰ Multiple second harmonic configurations available. For more

Drawings

CRONUS-2P drawing

DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT, REFLECTED OR SCATTERED RADIATION

CLASS 4 LASER PRODUCT

*

- with less than ± 1 °C temperature change after 1 h warm up.
- also available
- and > 1.5 W @ 1025 nm.
- information contact sales@lightcon.com.
 - Front view 124 136 124 120.8 Laser output 680 – 960 nm Laser output 940 – 1300 nm Laser output 1025 nm fixed

ĈRONUS | 3P

Laser Source for Advanced Nonlinear Microscopy

CRONUS-3P output power and pulse energy vs wavelength, at 1 MHz

CRONUS-3P typical pulse duration at 1300 nm and 1700 nm

CRONUS-3P GDD control range

CRONUS-3P beam profile at 1300 nm

Specifications

Model	CRONUS-3P CRONUS-3P with power control			
Tuning range	1250 – 1800 nm			
Repetition rate ¹⁾	Single-shot – 1 MHz or 2 MHz			
	1300 nm	1700 nm	1300 nm	1700 nm
Pulse duration	< 50 fs	< 65 fs	< 50 fs	< 65 fs
Output power	> 1100 mW @ 1 MHz > 800 mW @ 2 MHz	> 800 mW @ 1 MHz > 500 mW @ 2 MHz	> 1000 mW @ 1 MHz > 700 mW @ 2 MHz	> 700 mW @ 1 MHz > 400 mW @ 2 MHz
GDD control range ²⁾	-4 000 to +9 000 fs ²	-12 000 to +3 500 fs ²	-4 000 to +9 000 fs ²	-12 000 to +3 500 fs ²
Beam diameter 3)	2 – 4 mm			
Beam quality, M ²	<1.2			
Beam ellipticity	>0.8			
Beam divergence	<1mrad			
Beam pointing stability	< 100 µrad			
Long-term power stability, 24 h ⁴⁾	< 1%			
Pulse-to-pulse energy stability, 1 min 4)	<1%			

MAIN OUTPUT WITHOUT GDD CONTROL

Output power ⁵⁾	> 1500 mW @ 1 MHz > 1000 mW @ 2 MHz	> 1050 mW @ 1 MHz > 700 mW @ 2 MHz	n/a
ADDITIONAL OUTPUTS			

Auxiliary 1030 nm amplifier output	1030 \pm 10 nm, up to 40 W, up to 2 MHz, < 250 fs
Optional 680 – 920 nm amplifier output	680 – 920 nm, > 1500 mW @ 1 MHz or > 1000 mW @ 2 MHz (@ 920 nm), < 290 fs (compressible to < 50 fs) ⁶⁾
Optional 1030 nm oscillator output	1030 \pm 10 nm, up to 500 mW, \approx 65 MHz, \approx 200 fs

ENVIRONMENTAL REQUIREMENTS & DIMENSIONS

- ¹⁾ Lower repetition rate with a higher pulse energy option available.
- ²⁾ Continuous dispersion control; -4000 fs² compensates a
- microscope with +4000 fs².

⁵⁾ Available only for v1. Contact sales@lightcon.com for more details. With external compressor without GDD control, < 70% transmission at 920 nm.

Refer to www.lightcon.com

- ³⁾ 1/e², measured at compressor output.
- ⁴⁾ Expressed as normalized root mean squared deviation (NRMSD).

100

150

Time, h

200

CRONUS-3P typical long-term power stability at 1300 nm

λ = 1300 nm NRMSD = 0.35%

250

300

CRONUS-3P typical pulse-to-pulse energy distribution at 1300 nm

Drawings

0

Output power, W 1.4

1.3

CRONUS-3P drawing

152.5 32

ģ≙

125

50

Wavelength-Tunable Sources

LIGHT CONVERSION'S OPAs offer a broad tuning range from deep-UV to mid-IR. Coupled with our femtosecond lasers, these OPAs provide an invaluable source for ultrafast spectroscopy, nonlinear microscopy, and a variety of other scientific applications.

I-OPA	The only commercial industrial-grade OPA combines wavelength tunability with robust industrial design.	
	The next-generation of OPAs with exceptional stability and multiple detectors for continuous power monitoring and diagnostics.	
ÔRPHEUS	Classic OPAs that many are used to. Just like TOPAS, they are quite simple yet offer an extensive range of parameters.	
ŢOPAS	Classic OPAs for Ti:Sapphire lasers.	

Continuous wavelength tunability from UV to MIR

Pulse duration from tens of femtoseconds to a few picoseconds Leading OPA manufacturer for more than 30 years

I-OPA

Industrial-Grade Optical Parametric Amplifier

I-OPA-TW on air-cooled CARBIDE-CB5

I-OPA-HP typical tuning curves Pump: 40 W, 400 µJ, 100 kHz

I-OPA-F typical tuning curves Pump: 40 W, 400 μJ, 100 kHz

Specifications

Model	I-OPA-HP	I-OPA-F	I-OPA-ONE
Configuration	ORPHEUS	ORPHEUS-F	ORPHEUS-ONE
Pump power		Up to 40 W	
Pump pulse energy		20 – 400 µJ	
Repetition rate		Up to 2 MHz	
Tuning range ¹⁾	640 – 1010 nm (signal) 1050 – 2600 nm (idler)	650 – 920 nm (signal) 1200 – 2500 nm (idler)	1350 – 2000 nm (signal) 2100 – 4500 nm (idler)
Conversion efficiency	> 7% @ 700 nm (40 – 400 μJ pump; up to 1 MHz)		> 9% @ 1550 nm (40 – 400 µJ pump; up to 1 MHz)
	> 3.5% @ 700 nm (20 – 40 µJ pump; up to 2 MHz)		> 6% @ 1550 nm (20 – 40 μJ pump; up to 2 MHz)
Spectral bandwidth ²⁾	80 – 220 cm ⁻¹ @ 700 – 960 nm	200 – 1000 cm ⁻¹ @ 650 – 920 nm 150 – 1000 cm ⁻¹ @ 1200 – 2000 nm	60 – 150 cm ⁻¹ @ 1450 – 2000 nm
Pulse duration ²⁾³⁾	120 – 250 fs	< 55 fs @ 800 - 920 nm < 70 fs @ 650 - 800 nm < 100 fs @ 1200 - 2000 nm	100 – 300 fs
Long-term power stability, 8 h ⁴⁾	< 1% @ 800 nm		< 1% @ 1550 nm
Pulse-to-pulse energy stability, 1 min ⁴⁾	< 1% @ 800 nm		< 1% @ 1550 nm
Wavelength extension options	320 – 505 nm (SHS) ⁵⁾ 525 – 640 nm (SHI) ⁵⁾	Contact sales@lightcon.com	4500 – 10000 nm (DFG)
Pulse compression options ²⁾	n/a	SCMP (signal pulse compressor) ICMP (idler pulse compressor) GDD-CMP (compressor with GDD control)	n/a

PUMP LASER REQUIREMENTS

Pump laser	PHAROS or CARBIDE
Center wavelength	1030 ± 10 nm
Maximum pump power	40 W
Maximum repetition rate	Up to 2 MHz
Pump pulse energy	20 – 400 µJ
Pulse duration	180 – 300 fs

ENVIRONMENTAL & UTILITY REQUIREMENTS

Operating temperature ⁶⁾	19 – 25 °C (air conditioning recommended)		
Relative humidity ⁶⁾	20 – 70% (non-condensing)		
Electrical requirements	n/a ⁷⁾		

¹⁰ In case of fixed wavelength (FW), a single wavelength can be selected from the signal or idler range. The signal may have an accessible idler pair, and vice versa.

 ²¹ I-OPA-F broad-bandwidth pulses are compressed externally. Typical pulse duration before compression:
 120 - 250 fs, after compression: 25 - 70 fs @ 650 - 900 nm,
 40 - 100 fs @ 1200 - 2000 nm.

³ Output pulse duration depends on selected wavelength and pump laser pulse duration.

- Expressed as normalized root mean squared deviation (NRMSD).
 Conversion efficiency is 1.2% at peak; specified as a percentage
- of pump power. ⁶⁾ Specifications are guaranteed for a maximum temperature
- variation of ± 1 °C and humidity variation of ± 10%.
 ⁷ I-OPA is powered by the same electrical source as the pump

laser. Thus, refer to the pump laser electrical requirements.

DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EVE OR SKIN EXPOSURE TO DIRECT, REFLECTED OR SCATTERED RADIATION

CLASS 4 LASER PRODUCT

ÔRPHEUS | F

Broad-Bandwidth Hybrid Optical Parametric Amplifier

ORPHEUS-F typical tuning curves. Pump: 40 W, 40 μJ, 1000 kHz

ORPHEUS-F typical spectral bandwidth

For custom tuning curves visit http://toolbox.lightcon.com/tools/tuningcurves

Specifications

MAIN OUTPUT (650 - 900 nm and 1200 - 2500 nm)

Mode of operation	Short pulse mode ¹⁾	Long pulse mode	
Tuning range	650 – 900 nm (signal) 1200 – 2500 nm (idler)	650 – 1010 nm (signal) 1050 – 2500 nm (idler)	
Maximum pump power	80	W	
Pump pulse energy	10 - 50	Lμ 00	
Conversion efficiency ²⁾	>7%@`	700 nm	
Integrated 2H (515 nm) generation efficiency ³⁾	> 35%		
Pulse duration before compression ¹⁾	< 290 fs		
Spectral bandwidth	$200 - 750 \text{ cm}^{-1} @ 650 - 900 \text{ nm}$ $60 - 220 \text{ cm}^{-1} @ 650 - $		
Pulse duration after compressor ¹⁾	< 55 fs @ 800 - 900 nm < 70 fs @ 650 - 800 nm < 100 fs @ 1200 - 2000 nm	n/a	
Compressor transmission	> 65% @ 650 – 900 nm > 80% @ 1200 – 2000 nm		
Long-term power stability, 8 h 4)	< 2% @ 800 nm		
Pulse-to-pulse energy stability, 1 min ⁴⁾	< 2% @ 800 nm		

WAVELENGTH EXTENSION OPTIONS (325 - 15000 nm) 5)

325 – 450 nm (SHS)	> 1%	n/a	
325 – 505 nm (SHS)		> 1%	
525 – 650 nm (SHI)	n/a	> 0.5%	
600 – 650 nm (SHI)	> 0.5%	n/a	
210 – 252 nm (FHS)		> 0.1%	
263 – 325 nm (FHI)	n/a		
2500 – 15000 nm	See ORPHEUS-MIR;		

PUMP LASER REQUIREMENTS

Pump laser	PHAROS or CARBIDE
Center wavelength	1030 ± 10 nm
Maximum pump power	80 W
Repetition rate	Single-shot – 2 MHz
Pump pulse energy	10 – 500 µJ
Pulse duration 6)	180 – 500 fs

ENVIRONMENTAL & UTILITY REQUIREMENTS

- ¹ In short pulse mode, broadband pulses are compressed externally. Typical pulse duration before compression: 120 – 250 fs, after compression: 25 – 70 fs @ 650 – 900 nm, 40 – 100 fs @ 1200 – 2000 nm.
- ²⁰ Specified as a percentage of pump power, before compressor. Conversion efficiency at peak is equal to 10% for signal and idler combined.

- Refer to www.lightcon.com
- ³⁾ At designated output port; not simultaneous to OPA output.
- ⁴⁾ Expressed as normalized root mean squared deviation (NRMSD).
 - ⁵⁾ For > 15 μJ pump pulse energy.
 ⁶⁾ FWHM, assuming Gaussian pulse shape.
- DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EVE OR SKIN EXPOSURE TO DIRECT, REFLECTED OR SCATTERED RADIATION CLASS 4 LASER PRODUCT

Drawings

ORPHEUS-F drawings

Dual Optical Parametric Amplifier

Specifications

MAIN OUTPUT

Tuning range	Choice between ORPHEUS, ORPHEUS-F, and ORPHEUS-ONE configurations
Output pulse energy	Depends on the configuration, see the specifications of the chosen models
Spectral bandwidth	Depends on configuration, 100 – 750 cm ⁻¹
Pulse duration	Depends on configuration, down to < 50 fs
Repetition rate	Single-shot – 2 MHz

PUMP LASER REQUIREMENTS

Pump laser	PHAROS or CARBIDE
Center wavelength	1030 ± 10 nm
Maximum pump power	60 W
Repetition rate	Single-shot – 2 MHz
Pump pulse energy	16 – 500 μJ
Pulse duration ¹⁾	180-300 fs

ENVIRONMENTAL & UTILITY REQUIREMENTS

Operating temperature ²⁾	19 – 25 °C (air conditioning recommended)
Relative humidity 2)	20 – 70% (non-condensing)
Electrical requirements	100 – 240 V AC, 4.5 A; 50 – 60 Hz
Rated power	280 W
Power consumption	Standby: 20 W Max during wavelength tuning: 200 W

¹⁾ FWHM, assuming Gaussian pulse shape.

 21 Specifications are guaranteed for a maximum temperature variation of \pm 1 °C and humidity variation of \pm 10%.

ORPHEUS-TWINS (-ONE/-F configuration) tuning curves. Pump: 40 W, 40 μJ, 1000 kHz

10000 10 1000 Output power, mW Pulse energy, µJ 100 0.1 DFG1 DFG2 DFG3 DFG4 TWIN1 Idler 10 0.01 -TWIN1 Signal ---- TWIN2 Idler ---- TWIN2 Signal 10-3 1000 2000 5000 10000 Wavelength, nm

ORPHEUS-TWINS (ORPHEUS / ORPHEUS configuration) tuning curves. Pump: 20 W, 20 μJ, 100 kHz

For custom tuning curves visit http://toolbox.lightcon.com/tools/tuningcurves

Drawings

ORPHEUS-TWINS drawings

Femtosecond Lasers

LIGHT CONVERSION is world-renowned for its industrial-grade Yb-based femtosecond lasers, covering a wide range of scientific, industrial, and medical applications.

FLINT	Expanding the parameter range with repetition rates ranging from 10 to 100 MHz, with power up to 20 W and pulse duration down to 50 fs.
PHAROS	Scientific flexibility and process-tailored output parameters, providing pulse duration down to 100 fs and pulse energy of up to 4 mJ.
ĈARBIDE	Compact industrial design in air-cooled and water-cooled models, providing up to 120 W, 1 mJ or 80 W, 2 mJ with excellent output stability.

High average power and high pulse energy at a high repetition rate Market-proven industrialgrade stability and reliability Tailored to the needs of industry and science

FLINT

High-Repetition-Rate Lasers

FLINT-FL1

FLINT-FL1 Typical spectrum

FLINT-FL1 Typical pulse duration

FLINT-FL2-SP Typical pulse duration

FLINT-FL1 Typical beam profile

FLINT-FL2-SP Typical beam profile

0.2

Specifications

Model	FL1			FL2-SP				
Key feature	CEP	RRL	Compact	Short pulse	High po	High power and high energy		
Pulse duration	< 10	00 fs	< 120 fs	< 50 fs	< 120 fs	< 170	< 170 fs ¹⁾	
Repetition rate	60 – 100 MHz ²⁾		2)	10 MHz	10 MHz	40 MHz	80 MHz	
Maximum output power	0.5 W	1 W	8 W	4 W	5 W	20	W	
Maximum pulse energy	6 nJ ³⁾	12.5 nJ ³⁾	100 nJ ³⁾	0.4 µJ	0.5	δµJ	0.25 µJ	
Center wavelength	1035 ± 10 nm			1030 ± 10 nm		1030 ± 10 nm		
Polarization		Linear, horizontal						
Beam quality, M ²	<1.2 <1.3 <1.2							
Beam pointing stability	<10 µrad/°C							
Long-term power stability, 100 h ⁴⁾				< 0.5%				
Integrated 2H generator 5)	n/a Optional; conversion efficie > 30% ⁶⁾				efficiency			
External 2H, 3H, or 4H generator ⁵⁾	Optional; Refer to HIRO for FLINT							
Integrated attenuator		n/a		In	cluded			

PHYSICAL DIMENSIONS

Laser head (L × W × H)	448 × 206 × 115 mm	543 × 322 × 146 mm		
Power supply and chiller rack $(L \times W \times H)$	642 × 553 × 540 mm	642 × 553 × 673 mm		
Chiller	Different options available. Contact sales@lightcon.com			

ENVIRONMENTAL AND UTILITY REQUIREMENTS

Operating temperatu	re	15–30 °C (air conditioning recommended)			
Relative humidity		< 80% (non-condensing)				
Electrical requiremen	ts	100 V AC, 7 A – 240 V AC, 3 A; 50 – 60 Hz 50 – 60 Hz				
Rated power			200 W			
	Laser	100 W	150 W			
Power consumption	Chiller	600 W	1000 W			

- $^{\scriptscriptstyle 1\!\!/}$ For 20 W output power. Lower power models: 8 W and 12 W, are available upon request.
- ⁴⁾ With enabled power-lock, under stable environmental conditions. Expressed as normalized root mean squared deviation (NRMSD).

- ²⁾ Standard repetition rate is 80 MHz; custom repetition rate can be factory preset from the given range.
- $^{\scriptscriptstyle 3)}\,$ Depends on the repetition rate. Values are given for 80 MHz.
- ⁵ For external 2H, or even 3H and 4H generation, refer to HIRO for FLINT.
- ⁶⁾ Conversion efficiency specified at maximum power.

Stability

FLINT-FL2 (20 W) output power stability under harsh environmental conditions over 7 days

FLINT oscillator relative intensity noise (RIN), shot-noise limited at -160 dBc/Hz above 1 MHz

PHAROS

Modular-Design Femtosecond Lasers for Industry and Science

Tunable pulse duration, 100 fs – 20 ps

Maximum pulse energy of up to 4 mJ

Down to < 100 fs right at the output

Pulse-on-demand and BiBurst for pulse control

Up to 5th harmonic or tunable extensions

CEP stabilization or repetition rate locking

Thermally-stabilized and sealed design

PHAROS-PH2-UP Typical pulse duration

PHAROS-PH2-UP Typical spectrum

PHAROS

Pulse energy vs fundamental repetition rate

Specifications

Model	PH2-10W	PH2-20W-SP	PH2-4mJ	PH2-UP

OUTPUT CHARACTERISTICS

	1030 ± 10 nm						
10 W	10 W 20 W						
< 290 fs		< 190 fs		< 450 fs ³⁾	< 10	0 fs	
290 fs – 10 ps (20 ps on request)	- 10 ps 190 fs - 10 ps 450 fs - 10 ps 100 fs - 10 ps 100 fs - 10 ps						
0.2 mJ	0.4 mJ	1 mJ	2 mJ	4 mJ	0.4 mJ	1mJ	
	Single-shot – 1 MHz						
	Single-shot, pulse-on-demand, any fundamental repetition rate division						
	Linear, horizontal						
< 1.2		< 1.3	3		<1	.2	
3.3 ± 0.5 mm	3.3 ± 0.5 mm 4.0 ± 0.5 mm 4.5 ± 0.5 mm 6.8 ± 0.7 mm 4.5 ± 0.5 mm					6 ± 0.5 mm	
	< 20 µrad/°C						
	<1:1000						
	<1:200						
	< 0.5%						
	< 0.5%						
	10 W < 290 fs 290 fs - 10 ps (20 ps on request) 0.2 mJ	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{tabular}{ c c c c } & $$10 \ $10 \ m $$ $$10 \ m $$10 \ m $$ $$290 \ s $$10 \ s $$290 \ s $$10 \ s $$290 \ s $$100 \ s $$$190 \ s $$100 \ s $$1$	

MAIN OPTIONS

Oscillator output 6)	1 – 7 W, 50 – 250 fs, ≈ 1035 nm, ≈ 76 MHz			
Harmonic generator 7)	515 nm, 343 nm, 257 nm, or 206 nm			
Optical parametric amplifier ⁸⁾	320 – 10000 nm; see page 12			
BiBurst option	Tunable GHz and MHz burst with burst-in-burst capability			
CEP stabilization				
Repetition rate locking	Optional			

PHYSICAL DIMENSIONS

Laser head (L × W × H) $^{9)}$	730 × 419 × 230 mm	827 × 492 × 250 mm	770 × 419 × 230 mm
Chiller (L \times W \times H)	590 × 484 × 267 mm		
24 V DC power supply (L \times W \times H) $^{\scriptscriptstyle 9)}$	280 × 144 × 49 mm		

ENVIRONMENTAL & UTILITY REQUIREMENTS

Operating temperature		15–30 °C (air conditioning recommended)
Relative humidity		< 80% (non-condensing)
Electrical as a discussion	Laser	100 V AC, 12 A - 240 V AC, 5 A, 50 - 60 Hz
Electrical requirements Ch	Chiller	100 – 230 V AC, 50 – 60 Hz
Rated power	Laser	1000 W
	Chiller	1400 W
Power consumption	Laser	600 W
	Chiller	1000 W

⁹ Precise wavelengths for specific models are available upon request.

²⁾ Assuming Gaussian pulse shape.

- Pulse duration can be reduced to < 250 fs if pulse peak intensity of > 50 GW/cm² is tolerated by the customer setup.
- FW 1/e², measured at laser output, using maximum pulse energy.
 Under stable environmental conditions. Expressed as normalized root mean squared deviation (NRMSD).
- Available simultaneously. Contact sales@lightcon.com for more details or customized solutions.
 Integrated. For external harmonic generator, refer to HIRO.
- Integrated. For external namining generator, refer to Hind.
 Integrated. For more options and OPAs for -4mJ and -UP models,
- DANGER: VISIBLE AND/OR INVISIBLE LASER RADIATION AVOID EVE OR SKIN EMPOSUBER TO DRECT, REFLECTED OR SCATTERED RADIATION CLASS 4 LASER PRODUCT
- refer to www.lightcon.com.
 Dimensions depend on laser configuration and integrated options.

Beam properties

PHAROS Typical M² measurement data

PHAROS Typical near-field beam profile

PHAROS Typical far-field beam profile

Stability measurements

PHAROS

Long-term power stability 20.18 NRMSD = 0.03% 20.16 Output power, W 20.14 Ш ш 20.12 20.10 20.08 20.06 100 300 400 500 200 600 Time, h

Output power of industrial-grade **PHAROS** lasers operating 24/7 and the current of the pump diodes over the years

PHAROS output power and the stability of beam direction with power lock enabled, across varying environmental conditions

PHAROS Typical pulse-to-pulse energy stability

CEP stabilization

PHAROS lasers can be equipped with feedback electronics for carrier-envelope phase (CEP) stabilization of the output pulses. The carrier-envelope offset (CEO) of the **PHAROS** oscillator is actively locked to 1/4th of the repetition rate with a < 100 mrad standard deviation. The CEP stable pulses from the

PHAROS

Short-term CEP stability operating at 200 kHz repetition rate

Repetition rate locking

The oscillator of **PHAROS** laser can be customized for repetition rate locking applications. Coupled with the necessary feedback electronics, the repetition rate is synchronized to an external RF source using the two piezo stages installed inside the cavity.

synchronized amplifier have a < 350 mrad standard deviation. The CEP drift occurring inside the amplifier and the user's setup can be compensated with an out of loop f-2f interferometer, which is a part of the complete **PHAROS** active CEP stabilization package.

PHAROS

Long-term CEP stability operating at 200 kHz repetition rate

The repetition rate locking system can assure an integrated timing jitter of less than 200 fs for RF reference frequencies larger than 500 MHz. Continuous phase shifting is available on request.

Phase noise data of **PHAROS** oscillator locked to a 2.8 GHz RF source

Drawings

PHAROS-PH2-730 drawing. PH2 or PH2-SP with FEC, BiBurst, or harmonics

Timing jitter stability over 14 h PHAROS oscillator locked to a 2.8 GHz RF source

ĈARBIDE

Unibody-Design Femtosecond Lasers for Industry and Science

Tunable pulse duration, 190 fs – 20 ps
Maximum output of 120 W, 1 mJ or 80 W, 2 mJ
Single-shot – 10 MHz repetition rate
Pulse-on-demand and BiBurst for pulse control
Up to 5 th harmonic or tunable extensions
Air-cooled and water-cooled models
Compact industrial-grade design

CARBIDE-CB3

CARBIDE-CB3 Typical spectrum

CARBIDE-CB3 Typical beam profile

CARBIDE-CB3-120W

Long-term power stability

CARBIDE-CB3 specifications

OUTPUT CHARACTERISTICS

Cooling method		Water-cooled				
Center wavelength		1030 ± 10 nm				
Maximum output power	20 W	20 W 40 W 80 W 120 W			120 W	
Pulse duration ¹⁾	< 250 fs < 350 fs ²⁾ < 250 fs			< 250 fs		
Pulse duration tuning range		250 fs – 10 ps			350 fs – 10 ps	250 fs – 10 ps
Maximum pulse energy		0.4 mJ	0.2 mJ	0.8 mJ	2 mJ	1 mJ
Repetition rate	Single-shot – 1 MHz	Single-shot–1 MHz (2 MHz on request)	Single-shot – 10 MHz		Single-shot – 2 MHz	
Pulse selection	Single-shot, pulse-on-demand, any fundamental repetition rate division					
Polarization	Linear, vertical; 1 : 1000					
Beam quality, M ²		<1.2				
Beam diameter ³⁾		3.9 ± 0.4 mm		4.2 ± 0.4 mm	5.1 ± 0.7 mm	5 ± 0.5 mm
Beam pointing stability	< 20 µrad/°C					
Pulse energy control	FEC ⁴⁾		Attenuator 5)	FEC ⁴⁾		1)
Pulse picker leakage	< 0.25%		< 0.5%	< 0.25%		%
Pulse-to-pulse energy stability, 24 h ⁶⁾	< 0.5%					
Long-term power stability, 100 h ⁶⁾		< 0.5%				

MAIN OPTIONS

Oscillator output	< 0.5 W, 120 - 250 fs, 1030 ± 10 nm, ≈ 65 MHz ⁷	
Harmonic generator ⁸⁾	515 nm, 343 nm, 257 nm, or 206 nm	
Optical parametric amplifier 9)	320 – 10000 nm; see page 12	n/a
BiBurst option	Tunable GHz and MHz burst with burst-in-burst capability	

PHYSICAL DIMENSIONS

Laser head (L × W × H)	633 × 350 × 174 mm		
Chiller (L \times W \times H)	585 × 484 × 221 mm	680 × 484 × 307 mm	
24 V DC power supply (L \times W \times H)	280 × 144 × 49 mm ¹⁰⁾	320 × 200 × 75 mm	376 x 449 x 88 mm

ENVIRONMENTAL AND UTILITY REQUIREMENTS

Operating temperature		15 – 30 °C			
Relative humidity		< 80% (non-condensing)			
Electrical requirements	Laser	100 V AC, 7 A – 240 V AC, 3A; 50 – 60 Hz	100 V AC, 12 A – 240 V AC, 5 A 50 – 60 Hz	100 V AC, 15 A – 240 V AC, 7 A 50 – 60 Hz	
Chiller	Chiller	100 – 230 V AC; 50 – 60 Hz	200 – 230 V AC; 50 – 60 Hz		
	Laser	600 W	1000 W	2000 W	
Rated power Chiller	Chiller	1400 W	2000 W		
Power consumption Laser Chiller	Laser	500 W	900 W	1500 W	
	Chiller	1000 W	1300 W	1800 W	

¹⁾ Assuming Gaussian pulse shape.

- $^{21}\,$ Pulse duration can be reduced to < 250 fs if pulse peak intensity of > 50 GW/cm^2 is tolerated by the customer setup.
- ³⁾ FW 1/e², using maximum pulse energy.
- Fast energy control (FEC) provides fast, full-scale individual pulse energy control; an external analog control input is available.
 Waveplate-based variable optical attenuator (VOA); an external
- Waveplate-based variable optical attenuator (VOA); an external analog control input is available.
- ⁶⁾ Under stable environmental conditions. Expressed as normalized root mean squared deviation (NRMSD)

⁹⁾ Integrated. For more options and OPAs, refer to www.lightcon.com.

¹⁰⁾ Power supply can be different if optional 2 MHz version is selected.

 Available simultaneously, requires a scientific interface. Contact sales@lightcon.com for more details or customized solutions.
 Integrated. For external harmonic generator, refer to HIRO.

CARBIDE-CB5 (air-cooled) specifications

Model	CB5	CB5-SP

C

5 W		
5 W		
5 W		
6 W 5 W		
< 290 fs <190 fs		
190 fs – 20 ps		
100 µJ		
Single-shot – 1 MHz		
Single-shot, pulse-on-demand, any fundamental repetition rate division		
Linear, vertical; 1 : 1000		
<1.2		
2.1±0.4 mm		
< 20 µrad/°C		
Attenuator 4)		
< 2%		
< 0.5%		
< 0.5%		
-		

MAIN OPTIONS

Oscillator output	n/a
Harmonic generator 7)	515 nm, 343 nm, 257 nm, or 206 nm;
Optical parametric amplifier ⁸⁾	320 – 10000 nm; see page 12
BiBurst option	n/a

PHYSICAL DIMENSIONS

Laser head (L × W × H)	633 × 324 × 162 mm
Chiller	Not required
24 V DC power supply (L × W × H)	220 × 95 × 46 mm

ENVIRONMENTAL AND UTILITY REQUIREMENTS

Operating temperature	17 – 27 °C
Relative humidity	< 80% (non-condensing)
Electrical requirements	100 V AC, 3 A - 240 V AC, 1.3 A; 50 - 60 Hz
Rated power	300 W
Power consumption	150 W

Water-cooled version available on request.

²⁾ Assuming Gaussian pulse shape.

³⁾ FW 1/e², using maximum pulse energy.

⁴⁾ Waveplate-based variable optical attenuator (VOA); an external analog control input is available.

⁵⁾ Enhanced contrast AOM. Provides fast amplitude control of output pulse train.

⁶⁾ Under stable environmental conditions. Expressed as normalized root mean squared deviation (NRMSD).

- 7) Integrated. For external harmonic generator, refer to HIRO. ⁸⁾ Integrated. For stand-alone OPAs, refer to www.lightcon.com.

CARBIDE-CB5

Long-term power stability

CARBIDE-CB5 Typical beam profile

Stability measurements

CARBIDE-CB3 output power and beam direction stability with power lock enabled, across varying environmental conditions

CARBIDE-CB3

Typical pulse-to-pulse energy stability

Drawings

CARBIDE-CB3 drawing

Air-cooled CARBIDE-CB5 with attenuator drawing

Harmonic imaging of the heart's conductive system using FLINT femtosecond oscillator. Courtesy of the Biomedical Photonics Laboratory, Vilnius University.

Nonlinear Microscopy Applications

LIGHT CONVERSION delivers best-in-class lasers and laser systems for today's most demanding applications.

Functional 3P neuroimaging

2P optogenetics

SHG, THG, and 2P imaging

Functional 3P neuroimaging

Recording real-time single-neuron activity in the deep brain layers of awake animals is essential for understanding behavior, brain connectivity, and function. These applications have been advanced by neuron imaging and stimulation techniques using high-power, high-pulse-energy lasers with medium-repetition rates, tunable in the SWIR range, which aligns with the biological transparency

Conjugate AO Pupil plane Pupil plane ETL Remote focusing Focus sensing PM LIA Magnitud Intact SLM skull conjugat nlane Corte

windows at 1300 nm and 1700 nm. For 2P and 3P excited fluorescence, and harmonic-generation (SHG, THG) imaging in deep tissues, dispersion-controlled femtosecond pulses from I-OPA and ORPHEUS OPAs and microscopy-dedicated CRONUS lasers represent state-of-the-art choices.

3P microscopy with adaptive optics for focus sensing and shaping to compensate for both aberrations and scattering. **ORPHEUS-F** excitation at 1300 nm enabled imaging up to 1.1 mm below the pia within the intact brain.

Courtesy of Jianan Y. Qu group, the Hong Kong University of Science and Technology. Source: Qin et al., Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping, Nature Biotechnology 40 (2022).

2P and 3P calcium imaging at depth in mouse brain

Three-photon microscopy (3PM) has gained popularity as a tool able to extend the capabilities of two-photon microscopy (2PM) by imaging deeper layers in the brain and other tissues such as tumors and bone. Imaging depth in 2PM is limited by the scattering and absorption of excitation light within the tissue. 3PM overcomes this limit because the higher nonlinearity of the 3P excitation reduces the background.

Comparison of in vivo 2P and 3P calcium imaging of mouse visual cortex GCaMP neurons on a Thorlabs Bergamo II microscope using a typical 2P laser and Light Conversion's **CRONUS-3P** (3P) laser at 920 nm and 1300 nm, respectively.

Courtesy of CSHL ISFNS 2024 school organizers, Willis Broden Jr. and Sergey Matveev (Thorlabs).

2P optogenetics

Despite the advances in 3-photon excitation sources providing longer wavelengths and higher pulse energies, certain imaging challenges are still better addressed by tunable high-repetition-rate oscillator-based lasers. This is especially true when imaging speed is the primary factor. For these applications, the **CRONUS-2P** laser offers the ultimate solution with its optically synchronized three outputs, two of which are independently tunable. A three-beam source enables a variety of multiphoton excitation pathways, many of which are inaccessible using traditional single- and two-beam solutions. Furthermore, the independent tunability of the two beams enables new coherent Raman scattering modalities.

2P optogenetic stimulation of individual neurons using CRONUS-2P.

Courtesy of Albrecht Stroh group, University Medical Center Mainz and Leibniz Institute for Resilience Research. Source: T. Fu et al., Exploring two-photon optogenetics beyond 1100 nm for specific and effective all-optical physiology, iScience 24 (2021).

Raster-scanning 2P/3P microscopy

For applications requiring a fixed-wavelength femtosecond laser, such as multiphoton-driven fluorescence, excited at 1 μ m, and harmonic-generation (SHG, THG) microscopy, the **FLINT** oscillator is a high-performance solid-state source in a proven, industrial-

grade package and a compact footprint. The **FLINT** oscillator provides stable 24/7 operation with excellent noise performance, characterized by a RIN of < 140 dBc/Hz above 200 kHz and shotnoise-limited performance at -160 dBc/Hz above 1 MHz.

SHG and THG images of H&E-stained colon using the FLINT femtosecond oscillator.

Courtesy of Virginijus Barzda group, Vilnius University.

Widefield polarimetric SHG microscopy

Cancer diagnosis and surgical treatment rely on imaging techniques that demand specificity and high throughput. Polarization-resolved second-harmonic generation (P-SHG) microscopy shows potential for visualizing structural changes in collagen networks and the extracellular matrix associated with tumor development. Moreover, P-SHG imaging is label-free and compatible with live tissue imaging at depth. However, traditional raster scanning methods are too slow for clinical applications, and interpreting the structural sensitivity of P-SHG can be challenging. Nonlinear widefield microscopy addresses these limitations by utilizing amplified femtosecond lasers to increase imaging throughput and field of view. Additionally, machine learning (ML) techniques enable data-driven analysis, facilitating tasks such as automating tumor margin delineation and scoring. By leveraging **PHAROS** and **CARBIDE** lasers in conjunction with ML-augmented widefield microscopy, we can potentially extend the benefits of nonlinear microscopy to the scale required for biomedical and clinical applications.

Large-area widefield P-SHG microscopy of human lung tissue tumor margins conducted using the **PHAROS** laser. Image parameters, including SHG intensity, R-ratio, and degree of circular polarization, as well as SHG circular and linear dichroism, are employed in unsupervised ML algorithms to determine the tumor boundary.

Courtesy of Virginijus Barzda group, University of Toronto, and Brian C. Wilson group, Princess Margaret Cancer Centre. Source: Mirsanaye et al., Unsupervised determination of lung tumor margin with widefield polarimetric second-harmonic generation microscopy, Scientific Reports 12 (2022).

SHG, THG, and 2P imaging

Fixation methods, such as formalin, are commonly used for tissue preservation to maintain their structure as close as possible to the native condition. However, these fixatives chemically interact with tissue molecules, potentially altering their structure. To assess the impact of preservation methods, such as chemical fixatives, on

the nonlinear capabilities of protein components within mouse tissues, nonlinear two-photon (2P) microscopy and the **CRONUS-2P** femtosecond laser were utilized. These techniques take advantage of the SHG and THG emission properties of tissue components.

SHG signals from collagen, 2P excitation microscopy and THG signals from elastin in vibratome sections of mouse kidney after different treatments, registered using the CRONUS-2P femtosecond laser source.

Courtesy of Frauke Alves and Fernanda Ramos-Gomes, Max-Planck Institute for Multidisciplinary Sciences, Germany.

Combined SHG and THG imaging

Adult zebrafish heart ventricle section used in a scar formation study imaged with the **FLINT** femtosecond oscillator. The brightfield image is stained with Masson's trichrome (MT), where connective tissue appears blue and muscle appears red/brown. SHG and THG images reveal collagen and muscle structure at the periphery of the bulbus arteriosus, while MT-stained elastin is visualized in the center in THG.

Adult zebrafish heart ventricle section imaged using the FLINT femtosecond oscillator.

Samples courtesy of Justas Lazutka at the Vilnius University Life Sciences Center. Nonlinear imaging courtesy of the Virginijus Barzda group at the Vilnius University Faculty of Physics.

Label-free in vivo imaging

Understanding biological complexity requires minimally disruptive imaging tools capable of providing multiplexed molecular contrasts. To address this need, S. You's laboratory at the Massachusetts Institute of Technology is developing a non-invasive, label-free microscopy approach using CRONUS-3P to visualize biosystems. As part of a study on neuropathic pain, the image reveals the rich microenvironment of an unprocessed, intact mouse whisker pad: collagen capsule (green), comprising the follicle with muscles (yellow) supporting it, adipocytes (purple), stromal cells, and immune cells.

Mouse whisker pad using label-free microscopy.

Courtesy of Sixian You group, Massachusetts Institute of Technology.

Global Representative Network

AUSTRALIA NEW ZEALAND	Lastek Pty Ltd. Adelaide, Australia Phone: +61 8 84 438 668 ricardas@lastek.com.au www.lastek.com.au	ISRAEL	ROSH Electroptics Ltd. Natanya, Israel Phone: +972 (0)9 862 7401 info@roshelop.co.il www.roshelop.co.il
BELGIUM, NETHERLANDS, LUXEMBOURG	Laser 2000 Benelux C.V. Vinkeveen, Netherlands Phone: +31 297 266191 info@laser2000.nl www.laser2000.nl	ITALY	Optoprim S.r.l. Vimercate, Italy Phone: +39 039 834 977 info@optoprim.it www.optoprim.it
BRAZIL	Photonics Ltda São Paulo, Brazil Phone: +55 11 2839 3209 info@photonics.com.br www.photonics.com.br	JAPAN	Phototechnica Corp. Saitama, Japan Phone: +81 48 871 0067 voc@phototechnica.co.jp www.phototechnica.co.jp
CZECH REPUBLIC, SLOVAKIA	Femtonika s.r.o. Zbýšov, Czech Republic Phone: +420 792 417 400 info@femtonika.cz www.femtonika.cz	KOREA	Light Conversion Korea Daejeon, Korea Phone: +82 42 368 1010 jungsik.seo@lightcon.com
CHINA	Light Conversion China Shenzhen, China Phone: +86 189 4874 5558 sales.china@cn.lightcon.com	POLAND	Amecam Warszawa, Poland Phone: +48 602 500 680 amecam@amecam.pl www.amecam.pl
	Beijing Light-Quantum Technology Co., Ltd. Beijing, China Phone: +86 10 8290 0415 sales@light-quantum.cn www.light-quantum.cn	SINGAPORE	Acexon Technologies Pte Ltd. Singapore Phone: +65 6565 7300 sales@acexon.com www.acexon.com
	Genuine Optronics Limited Shanghai, China Phone: +86 21 64 325 169 jye@gen-opt.com www.gen-opt.com	SPAIN, PORTUGAL	Innova Scientific S.L. Las Rozas de Madrid, Spain Phone: +34 91710 56 50 rafael.pereira@innovasci.com www.innovasci.com
FRANCE, SWITZERLAND, BELGIUM	Jean-François Poisson Industrial Market Development Manager Phone: +33 674 48 0778 jf.poisson@lightcon.com	SWITZERLAND	GMP SA Renens, Switzerland Phone: +41 21 633 21 21 info@gmp.ch www.gmp.ch
FRANCE	Frédéric Berthillier Scientific Market Development Manager Phone: +33 745 014 410 frederic.berthillier@lightcon.com	TAIWAN	Alaser Co. Ltd. Taipei, Taiwan Phone: +886 2 2377 3118 alexfu@alaser.com.tw
germany, Austria, Switzerland	Ulrich Höchner Industrial Market Development Manager Phone: +49 157 8202 5058 u.hoechner@lightcon.com	TURKEY	www.alaser.com.tw Innova Teknoloji Ltd. İstanbul, Turkey Phone: +90 216 315 03 36
germany, Austria	Christian Hellwig Scientific Market Development Manager Phone: +49 174 204 9053 christian.hellwig@lightcon.com		eryetistir@innova-teknoloji.com www.innova-teknoloji.com Photonic Solutions Ltd. Ediaburgh LIK
	Stefan Piontek Scientific Market Development Manager Mobile +49 176 8345 7119 stefan.piontek@lightcon.com		Phone: +44 (0) 131 664 8122 ben.agate@photonicsolutions.co.uk www.photonicsolutions.co.uk
INDIA	Anatech Laser Instruments Pvt. Ltd. Mumbai, India Phone: +91 22 4121 0001 / 02 / 03 sales@anatechlaser.com www.anatechlaser.com	USA, CANADA	Light Conversion-USA, Inc. Bozeman, MT, USA Phone: +1 833 685 2872 salesIc@lightcon-usa.com

Lost in calculations?

Try interactive calculators for scientists & engineers

Optics Toolbox converters beam properties geometrical optics dispersion nonlinear optics other 0 Femtosecond losers and OPAs All calculators on the same page Create optical table layout in minutes Tuning curves of OPAs CONVERSION Converters Nonlinear optics Refraction Refractive index Ordinary/extraordinary rays
 Comparison of materials Refractive index, GVD, TOD
 Beam refraction in prism Phase matching angles, walk-offs, group velocit mismatch (collinear geo Pulse le Refraction, deviation Sum fraquancy ster's minin Focal length vs. radius of plane **Reflection and diffraction** Dispersion calculators Beam properties Reflectance of s/p pola light, Brewster's angle Diffraction angles Dependence on wavele Material dispersion Grating pair compressor Optical path, GDD (GDV), GD zero point, TOD, chirped puls Peak intensity/flu Of (super)Gaussian beam Pulse peak power Of Gaussian and sech² pu 642

toolbox.lightcon.com

All calculators on the same page

Optical table layout planner

Custom OPA tuning curves

LIGHT CONVERSION CHINA

702-1, F1 Building, TCL Science Park, No.1001 Zhongshanyuan Road, Nanshan Dist., Shenzhen, China Phone: +86 189 4874 5558 sales.china@cn.lightcon.com

LIGHT CONVERSION KOREA

520-ho, 65, Techno 3-ro, Yuseong-gu, Daejeon, 34016, Korea Phone: +82 42 368 1010 jungsik.seo@lightcon.com

LIGHT CONVERSION

Keramiku 2B, LT-10233 Vilnius, Lithuania

Tel.: Website: Sales: Service: +370 5 2491830 www.lightcon.com sales@lightcon.com service@lightcon.com

LIGHT CONVERSION USA, INC

619 N Church Ave, Unit #3 Bozeman, MT 59715 Phone: +1 833 685 2872 Fax: +1 833 395 2872 saleslc@lightcon-usa.com

toolbox.lightcon.com