
산업용 펨토초 레이저 시스템

제품 카탈로그

산업용 펨토초 레이저 시스템

LIGHT CONVERSION은 초고속 기술 분야의 세계적인 선두주자이며, 펨토초 레이저, 파장 조절 가능 광원 (OPAs 및 OPOs), 광 파라메트릭 처프 펄스 증폭기 (OPCPAs), 현미경 광원, 그리고 분광 시스템을 설계하고 제조합니다. 이 체계적인 포트폴리오는 산업, 과학 및 의학 분야에 맞춘 최고의 레이저를 자랑합니다.

회사 소개

1994년에 설립된 LIGHT CONVERSION은 초고속 레이저 기술 분야에서 선도적인 기업으로 성장하였습니다. 현재 전세계에 8000대 이상의 시스템이 설치되어 있으며, 600명의 직원 중 15%가 연구개발에 전념하고 있습니다. 자사의 레이저는 세계 상위 100대 대학 중 96개 대학에서 사용되고 있으며, 이는 첨단 연구에 대한 회사의 공헌을 조명합니다. 또한, 24시간 연중무휴 (24/7) 가동되는 산업 분야에서도 신뢰성과 성능을 보장합니다. 미국, 중국, 한국의 국제 지사외글로벌 대리점 네트워크를 통해 전 세계적인 판매 및 서비스지원을 제공합니다.

목차

5 펨토초 레이저

CARBIDE

- 6 산업 및 과학을 위한 일체형 설계 펨토초 레이저
- 10 고출력 자외선(UV) 펨토초 레이저
- 12 과학 인터페이스 모듈
- 13 BiBurst 옵션
- 22 자동화된 2차 고조파 발생기
- 24 HIRO 외부 고조파 발생기

PHAROS

- 14 산업 및 과학을 위한 모듈식 설계 펨토초 레이저
- 13 BiBurst 옵션
- 23 자동화된 고조파 발생기
- 24 HIRO 외부 고조파 발생기

FLINT

- 18 고반복률 레이저
- 21 자동화된 2차 고조파 발생기
- 24 HIRO 외부 고조파 발생기

26 파장 조절 가능 광원

I-OPA

- 29 미세 가공 응용 분야
- 34 글로벌 대리점 네트워크

펨토초 레이저

LIGHT CONVERSION은 산업 등급의 Yb 기반 펨토초 레이저 제조로 세계적인 인정을 받고 있으며 과학, 산업 및 의료 등의 다양한 분야에 적용될 수 있습니다.

- -				
	R	nı	D	
	HZ.	ĸı		
		v.		

컴팩트한 산업용 설계로 공냉식 및 수냉식 모델이 있으며, 최대 120 W, 1 mJ 또는 80 W, 2 mJ을 제공함과 동시에

뛰어난 출력 안정성을 보장합니다.

PHAROS

과학 분야 유연성과 공정 맞춤형 레이저 출력 매개변수로 최소 100 fs의 펄스 지속시간 및 최대 4 mJ의 펄스 에너지를

제공합니다.

FLINT

10-100 MHz 범위의 반복률을 통해 매개변수 범위를 확장하였으며, 최대 출력 파워 20 W 및 최소 50 fs의 펄스

지속시간을 제공합니다.

높은 반복률에서 높은 평균 출력 및 펄스 에너지 현장에서 검증된 산업 등급 안정성 및 신뢰성 산업 및 과학 분야의 요구에 맞출 수 있는 높은 확장성

CARBIDE

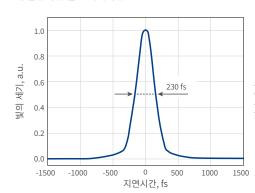
산업 및 과학을 위한 일체형 설계 펨토초 레이저

조절 가능한 펄스 지속시간, 190 fs - 20 ps

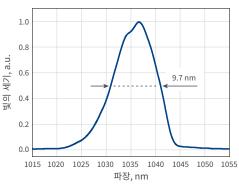
최대 출력 파워 및 펄스 에너지 120 W, 1 mJ 또는 80 W, 2 mJ

싱글 샷 - 2 MHz의 반복률

펄스 제어를 위한 Pulse-on-demand 및 BiBurst

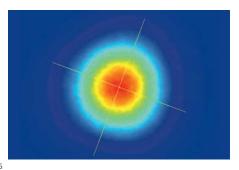

최대 5차 고조파 또는 확장 가능 옵션

공냉식 모델

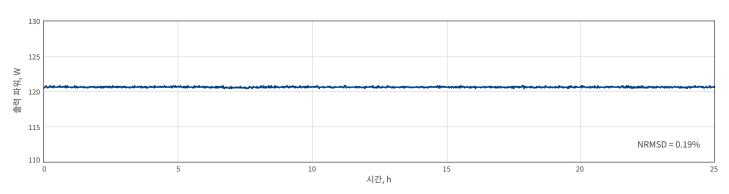

컴팩트한 산업 등급 설계

CARBIDE-CB3

CARBIDE-CB3 의 일반적인 펄스 지속시간



CARBIDE-CB3 의 일반적인 스펙트럼


CARBIDE-CB3

의 일반적인 빔 프로파일

CARBIDE-CB3-120W

의 장기적인 파워 안정성

|미세 가공

유 문 원 등 원

CARBIDE-CB3 기기 사양

					신제
모델	CB3-20W	CB3-40W	CB3-80W	CB3-120W	

출력 특성

냉각 방식		수냉식			
중심 파장 ¹⁾		1030 \pm 10 nm			
최대 출력 파워	20 W	20 W 40 W 80 W		120 W	
펄스 지속시간 ²⁾		< 250 fs		< 350 fs ³⁾	< 250 fs
펄스 지속시간 조절 범위		250 fs – 10 ps		350 fs – 10 ps	250 fs – 10 ps
최대 펄스 에너지	0.	4 mJ	0.8 mJ	2 mJ	1 mJ
반복률	싱글 샷 – 1 MHz	싱글 샷 – 1 MHz (요청 시 2 MHz까지)		싱글 샷 - 2 N	1Hz
펄스 선택		싱글 샷, pulse-on-demand, 모든 기본 반복률 분할			
편광		선형, 수직; 1 : 1000			
빔 품질, M²			< 1.2		
빔 직경 ⁴⁾	3.9 ±	0.4 mm	4.2 ± 0.4 mm	$5.1\pm0.7\mathrm{mm}$	$5\pm0.5\mathrm{mm}$
빔 포인팅 안정성		<20 μrad/°C			
펄스 피커		FEC ⁵⁾			
펄스 피커 리키지	< 0.25%				
펄스 대 펄스 에너지 안정성, 24 시간 ⁶⁾	< 0.5%				
장기간 파워 안정성, 100 시간 ⁶⁾			< 0.5%		

주요 옵션

오실레이터 출력 7)	< 0.5 W, 120 – 250 fs, 1030 \pm 10 nm, $pprox$ 65 MHz	
고조파 발생기 ⁸⁾	515 nm, 343 nm, 257 nm, or 206 nm; 22 페이지 참조	
광학 파라메트릭 증폭기 ⁹⁾	320 – 10000 nm; 26 페이지 참조 해당사항 없음	
BiBurst 옵션	Burst-in-burst 기능이 있는 조절 가능한 GHz, MHz 버스트; 13 페이지 참조	

물리적 치수

레이저 헤드 (L $ imes$ W $ imes$ H)	632 × 305 × 174 mm		
냉각기 (L × W × H)	585 × 484 × 221 mm 680 × 484 × 307 mm		307 mm
24 V DC 파워 서플라이 (L × W × H) ¹⁰⁾	280 × 144 × 49 mm	320 × 200 × 75 mm	376 x 449 x 88 mm

작동환경 & 유틸리티 요구사항

작동 온도		15 – 30 °C		
상대 습도		< 80% (비응결 상태)		
전기적 요구사양	레이저	100 V AC, 7 A – 240 V AC, 3A; 50 – 60 Hz	100 V AC, 12 A – 240 V AC, 5 A; 50 – 60 Hz	180 – 240 V AC, 16 A max; 50 – 60 Hz
	냉각기	100 – 230 V AC; 50 – 60 Hz	200 – 230 V AC;	50 – 60 Hz
정격 전력	레이저	600 W	1000 W	2000 W
정역 선택	냉각기	1400 W	2000	N
전력 소비	레이저	500 W	900 W	1400 W
선탁 오비	냉각기	1000 W	1300 W	1700 W

- 1) 요청 시 특정 모델에 정확한 중심 파장 제공 가능.
- 2) 가우시안 펄스 모양으로 가정.
- 3) 고객이 >50 GW/cm의 펄스 피크 세기를 허용하는 경우, <250 fs의 펄스 지속시간 가능
- $^{4)}$ FW $1/e^2$, 최대 펄스 에너지 사용.
- ⁵⁾ 빠른 에너지 제어(FEC) 기능 제공; 외부 아날로그제어 입력 가능. 응답 시간 – 사용 가능한 다음 RA 펄스까지.
- 이 안정적인 환경 조건에서 측정. 펄스 에너지를 정규화된 평균 제곱근 편차로 표현(NRMSD; normalized root mean squatred deviation).
- 지 동시 사용 가능(과학 인터페이스 필요). 커스텀 제공에 대한 더욱 자세한 사항은 sales@lightcon.com으로 문의.
- ® 레이저와 통합. 외부 고조파 발생기의 경우, HIRO 참조.
- ⁹⁾ 레이저와 통합, 더 많은 옵션에 대한 사항은 www.lightcon.com 참조.
- 10 옵션인 2 MHz 버전을 선택한 경우 전원 공급 장치 형태가 다를 수 있음.

CARBIDE-CB5 (공냉식) 기기 사양

모델	CB5	CB5-SP

출력 특성

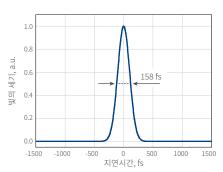
냉각 방식	공냉식 1)		
중심 파장 ²⁾	1030 \pm 10 nm		
최대 출력 파워	6 W	5 V	V
펄스 지속시간 ³⁾	< 2	90 fs	< 190 fs
펄스 지속시간 조절 범위	290 fs	– 20 ps	190 fs – 20 ps
최대 펄스 에너지	100 μJ	83 μJ	100 μJ
반복률	싱글 샷 – 1 MHz		
펄스 선택	싱글 샷, pulse-on-demand, 모든 기본 반복률 분할		
편광	선형, 수직; 1 : 1000		
빔 품질, M ²	< 1.2		
빔 직경 ⁴⁾	2.1 ± 0.4 mm		
빔 포인팅 안정성		< 20 μrad/°C	
펄스 피커	포함 포함 ⁵⁾ 포함		포함
펄스 피커 리키지	< 2 %	< 0.1 %	< 2 %
펄스 대 펄스 에너지 안정성, 24 시간 ⁶⁾	< 0.5%		
장기간 파워 안정성, 100 시간 ⁶⁾	< 0.5%		

주요 옵션

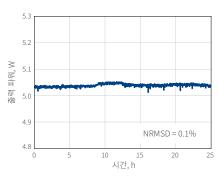
오실레이터 출력	해당사항 없음	
고조파 발생기 ⁷⁾	515 nm, 343 nm, 257 nm, or 206 nm; 22 페이지 참조	
광학 파라메트릭 증폭기 ⁸⁾	320 – 10000 nm; 26 페이지 참조	
BiBurst 옵션	해당사항 없음	

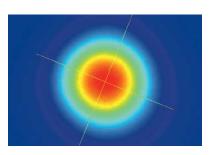
물리적 치수

레이저 헤드 (L $ imes$ W $ imes$ H)	631 × 324 × 162 mm	
냉각기	해당사항 없음	
24 V DC 파워 서플라이 (L × W × H)	220 × 95 × 46 mm	


작동환경 & 유틸리티 요구사항

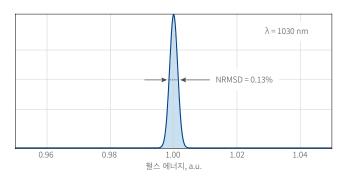
작동 온도	17 – 27 °C	
상대 습도	< 80% (비응결 상태)	
전기적 요구사양	100 V AC, 3 A – 240 V AC, 1.3 A; 50 – 60 Hz	
정격 전력	300 W	
전력 소비	150 W	


- D 요청 시 수냉식 모델 제공.
- 2) 요청 시 특정 모델에 정확한 중심 파장 제공 가능.
- ③ 가우시안 펄스 모양으로 가정.
- $^{\scriptscriptstyle (4)}$ FW $1/e^{\scriptscriptstyle 2}$, 최대 펄스 에너지 사용.
- ⁵⁾ 대비 강화된 AOM. 출력 펄스 트레인에 대한 빠른 진폭제어 제공.
- 6 안정적인 환경 조건에서 측정. 펄스 에너지를 정규화된 평균 제곱근 편차로 표현(NRMSD; normalized root mean squatred deviation).
- 7) 레이저와 통합. 외부 고조파 발생기의 경우, HIRO 참조.
- ® 레이저와 통합, 단독형 OPA의 경우 www.lightcon.com 참조

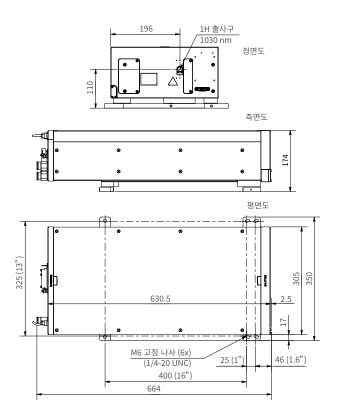

CARBIDE-CB5 의 일반적인 펄스 지속시간

CARBIDE-CB5 의 장기적인 파워 안정성

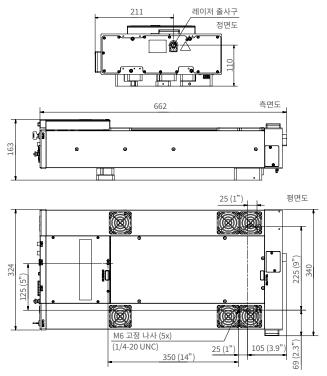
CARBIDE-CB5 의 일반적인 빔 프로파일



안정성 측정


다양한 환경 조건에서 파워락이 활성화된 CARBIDE-CB3의 출력 파워 및 빔 방향

CARBIDE-CB3 일반적인 펄스 대 펄스 안정성



도면

CARBIDE-CB3 도면

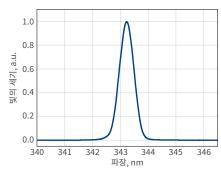
감쇠기가 있는 공냉식 CARBIDE-CB5 도면

CARBIDE | CB3-UV

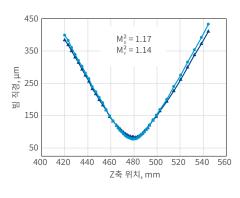
고출력 자외선(UV) 펨토초 레이저

최대 50 W 출력

500 fs 펄스 지속시간

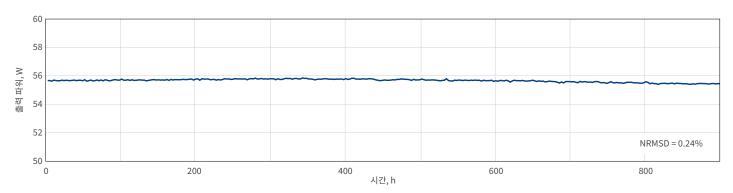

최대 MHz 단위 반복률

높은 빔 품질과 안정성


컴팩트한 산업용 설계

CARBIDE-CB3-UV

CARBIDE-CB3-UV 의 일반적인 스펙트럼


CARBIDE-CB3-UV 의 일반적인 M² 측정 데이터

CARBIDE-CB3-UV 의 일반적인 빔 프로파일

CARBIDE-CB3-UV-50W 의 장기적인 파워 안정성

모델

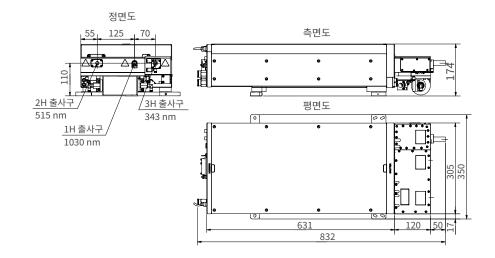
출력 특성			
냉각 방식	수냉식		
중심 파장	343 ±	: 3 nm	
최대 출력 파워	> 30 W	> 50 W	
펄스 지속시간 ¹⁾	≈ 500 fs		
최대 펄스 에너지	35 – 150 μJ		
반복률 ²⁾	200 – 800 kHz 300 – 1000 kHz		
편광	선형, 수직; 1: 200		
일반적인 빔 품질 (M²) 값	<1.3		
<mark>빔 직경 ³⁾</mark>	2.5 – 5 mm		
장기간 파워 안정성, 12 시간 ⁴⁾	< 0.5%		
수명	10000 시간 또는 1 년		

주요 옵션

물리적 치수

레이저 헤드 (L $ imes$ W $ imes$ H)	832 × 350 × 174 mm		
냉각기 (L \times W \times H)	680 × 484 × 307 mm		
24 V DC 파워 서플라이 (L × W × H)	320 × 200 × 75 mm 376 × 449 × 88 mm		

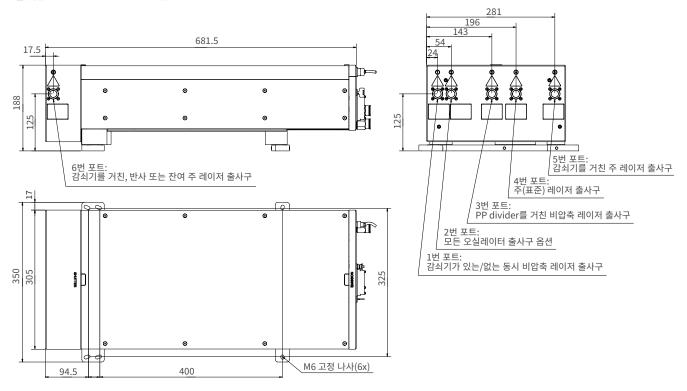
작동환경 & 유틸리티 요구사항


	15 - 3	0 °C		
	< 80% (비용	< 80% (비응결 상태)		
레이저	100 V AC, 12 A – 240 V AC, 5 A; 50 – 60 Hz	180 – 240 V AC, 16 A max; 50 – 60 Hz		
냉각기	200 – 230 V AC; 50 – 60 Hz			
레이저	1000 W 2000 W			
냉각기	2000	W		
레이저	900 W	1400 W		
냉각기	1300 W	1700 W		
	냉각기 레이저 냉각기 레이저	(비원 기계 시간		

- 1) 가우시안 펄스 모양으로 가정.
- 2) 저출력에서 최대 반복률 2 MHz까지 가능.
- 4) 안정적인 환경 조건에서 측정. 펄스 에너지를 정규화된 평균 제곱근 편차로 표현(NRMSD; normalized root mean squatred deviation).

도면

CARBIDE-CB3-UV 도면


SCI-M | CARBIDE

CARBIDE 과학 인터페이스 모듈

도면

SCI-M을 갖춘 CARBIDE-CB3-40-200 도면

BiBurst | OPTION

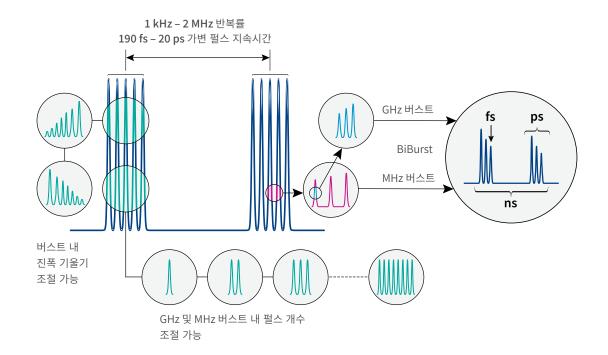
Burst-in-Burst 기능으로 조절 가능한 GHz 및 MHz 버스트

PHAROS 및 CARBIDE-CB3 레이저에는 버스트-인-버스트 기능으로 조절 가능한 BiBurst 옵션이 포함된 PHAROS 및 CARBIDE 레이저는 소비자 가전, 통합 GHz 및 MHz 버스트 옵션이 있습니다 - 통칭 BiBurst.

표준 모드에서는 특정 고정 주파수에서 단일 펄스가 방출됩니다. 버스트 모드에서는 출력은 단일 펄스 대신 펄스 패킷으로 구성됩니다. 각 패킷은 특정한 수의 일정하게 분리된 펄스로 구성됩니다.

MHz-Burst에는 나노초 주기의 N개의 펄스가 포함되고, GHz-Burst에는 피코초 주기의 P개의 펄스가 포함됩니다. MHz 및 GHz 버스트 모드를 동시에 사용하는 경우 일정하게 분리된 펄스 패킷에는 펄스의 서브 패킷(버스트 인 버스트 또는 BiBurst)이 포함됩니다.

포토닉 칩 제조. 미래 디스플레이 제조 및 양자 기술과 같은 첨단 제조 산업에 새로운 가능성을 제공합니다.


응용 분야는 아래와 같습니다.

- 깨지기 쉬운 재료 드릴링 및 절단
- 깊은 각인
- 선택적 어블레이션
- 투명 재료 부피 수정
- 히든 마킹
- 표면 연마
- 기능성 표면 제조

기기 사양

모델		CARBIDE-CB3	PHAROS		
CII-WAE	내부 버스트 펄스 주기 1)	440 ± 40 ps	$200 \pm 40 \text{ ps}$		
GHz 버스트 펄스 개수, P ²⁾		1 – 10 ³⁾	1 – 25		
MILLIII A E	내부 버스트 펄스 주기	≈ 15 ns			
MHz 버스트	펄스 개수, N	1 – 10	1 – 9 (7 with FEC 4))		

- 1) 요청 시 커스텀 간격 가능
- ²⁾ 버스트의 최대 펄스 개수는 레이저 반복률 및 펄스 에너지에 따라 다름. 요청 시 커스텀 펄스 개수 가능.
- ③ 요청시 커스텀 펄스 개수(최대 400까지) 가능.
- 4) 빠른 에너지 제어(FEC) 옵션. 레이저 펄스 반복률에서 원하는 포락선 형성 가능.

PHAROS

산업 및 과학을 위한 모듈식 설계 펨토초 레이저

조절 가능한 펄스 지속시간, 100 fs – 20 ps

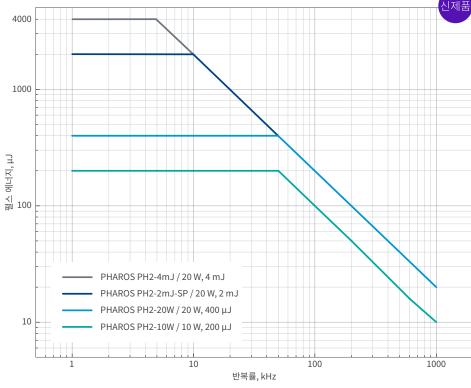
최대 펄스 에너지 4 mJ

출력 단에서 < 100 fs 펄스 지속시간

펄스 제어를 위한 Pulse-on-demand 및 BiBurst

최대 5차 고조파 또는 확장 가능 옵션

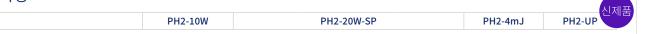
CEP 안정화 또는 반복률 잠금


열적 안정성 및 밀폐형 설계

PHAROS-PH2-UP 의 일반적인 펄스 지속시간 1.0 0.8 빛의 세기, a.u. 0.6 90 fs 0.2 0.0 -1500 -1000 -500 1000 1500 지연시간, fs PHAROS-PH2-UP 의 일반적인 스펙트럼 신제풀 1.0 0.8 빛의 세기, a.u.

21.9 nm

1050


1020

1030

1040

0.6

0.2 0.0 1010

출력 특성

모델

	1030 \pm 10 nm					
10 W	10 W 20 W					
< 290 fs		< 190 fs		< 450 fs ³⁾	< 100 fs	
290 fs - 10 ps (요청 시 20 ps까지)	190 fs - 10 ps (요청 시 20 ps까지)		450 fs – 10 ps	100 fs - 10 ps		
0.2 mJ	0.4 mJ	1 mJ	2 mJ	4 mJ	0.4 mJ	
	싱글 샷 − 1 MHz					
	싱글 샷, pulse-on-demand, 모든 기본 반복률 분할					
		선형, 수평				
< 1.2			< 1.3		< 1.2	
3.3 ± 0.5 mm	$4.0 \pm 0.5 \mathrm{mm}$	$4.5\pm0.5\mathrm{mm}$	6.6 ±	± 0.7 mm	4.5 ± 0.5 mn	
		< 20 μrad/	°C			
		<1:1000)			
	<1:200					
	< 0.5%					
		< 0.5%				
	< 290 fs 290 fs - 10 ps (요청 시 20 ps까지) 0.2 mJ	< 290 fs 290 fs - 10 ps (요청 시 20 ps까지) 0.2 mJ 0.4 mJ 싱글 첫	10 W < 290 fs 290 fs - 10 ps (요청 시 20 ps까지) 0.2 mJ 0.4 mJ 1 mJ 성글 샷 - 1 M 성글 샷, pulse-on-demand, 9 선형, 수평 < 1.2 3.3 ± 0.5 mm 4.0 ± 0.5 mm 4.5 ± 0.5 mm < 20 µrad/ < 1: 200 < 0.5%	10 W 20 W 20 W 20 W 20 W 20 M 20 PS M 20 M 5 - 10 PS (요청 시 20 PS M N) (요청 시 20 PS M N) (요청 시 20 PS M N) 2 M D D D D D D D D D D D D D D D D D D	10 W 20 W 450 fs 3	

주요 옵션

오실레이터 출력 6	1 – 7 W, 50 – 250 fs, \approx 1035 nm, \approx 76 MHz
고조파 발생기 7)	515 nm, 343 nm, 257 nm, or 206 nm; 23 페이지 참조
광학 파라메트릭 증폭기 ⁸⁾	320 – 10000 nm; 26 페이지 참조
BiBurst 옵션	Burst-in-burst 기능이 있는 조절 가능한 GHz, MHz 버스트; 13 페이지 참조
CEP 안정화	4= 700 71 +1-7
반복률 잠금	17 페이지 참조

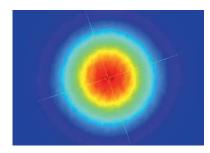
물리적 치수

레이저 헤드 (L $ imes$ W $ imes$ H) $^{9)}$	730 × 419 × 230 mm	827 × 492 × 250 mm	730 × 419 × 230 mm
냉각기 (L × W × H)	590 × 484 × 267 mm		
24 V DC 파워 서플라이 (L $ imes$ W $ imes$ H) 9	$280 \times 144 \times 49 \text{ mm}$		

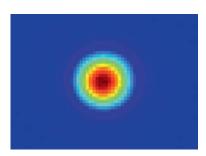
작동 환경 & 유틸리티 요구사항

작동 온도		15−30 °C (에어컨 권장)	
상대 습도		< 80% (비응결 상태)	
레이저		100 V AC, 12 A – 240 V AC, 5 A, 50 – 60 Hz	
전기적 요구사양	냉각기	100 – 230 V AC, 50 – 60 Hz	
지거지의	레이저	1000 W	
정격 전력 냉각기		1400 W	
전력 소비	레이저	600 W	
	냉각기	1000 W	

- ¹⁾ 요청 시 특정 모델에 정확한 중심파장 제공 가능.
- ²⁾ 가우시안 펄스 모양으로 가정.
- ³⁾ > 50 GW/cm²의 피크 세기 가능할 경우, <250 fs의 펄스 지속시간 가능.
- $^{4)}$ 최대 펄스 에너지에서, 외부 측정된 빔의 $1/e^2$ 전체 폭.
- 9 안정적인 환경 조건에서 측정. 펄스 에너지를 정규화된 평균 제곱근 편차로 표현(NRMSD; normalized root mean squatred deviation).
- ⁶⁾ 동시에 출력 가능. 커스텀 솔루션에 대한 더욱 자세한 사항은 sales@lightcon.com에 문의.
- ⁷⁾ 레이저와 통합. 외부 고조파 발생기의 경우, HIRO 참조.
- 8) -4mJ 및 -UP 모델에 대한 추가 옵션 및 OPA를 보려면 www.lightcon.com를 참조하십시오.
- 9 레이저 구성 및 옵션에 따라 치수 변동 가능.

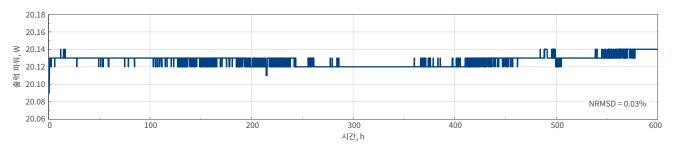


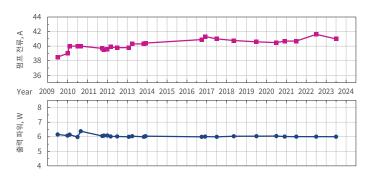
빔 특성


PHAROS 의 일반적인 M² 측정 데이터

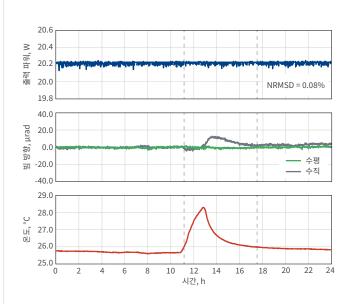
1000 $M_X^2 = 1.09$ $M_Y^2 = 1.07$ 800 Ш 600 전 전 <u>=</u>0 400 200 350 400 450 500 550 Z축 위치, mm

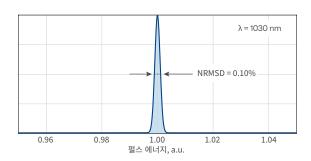
PHAROS 의 일반적인 근접장 빔 프로파일


PHAROS 의 일반적인 원거리장 빔 프로파일

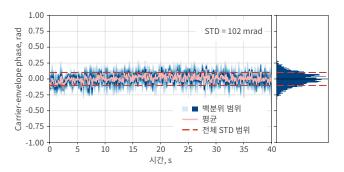

안정성 측정

PHAROS


의 장기적인 파워 안정성


연중무휴로 작동하는 산업용 등급 PHAROS 레이저의 출력 전력과 수년간의 펌프 다이오드 전류

PHAROS 다양한 환경 조건에서 파워 잠금이 활성화된 경우 출력 전력 및 빔 방향의 안정성

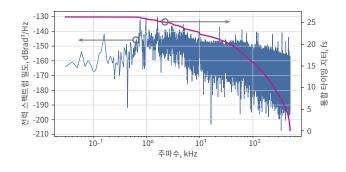

PHAROS 일반적인 펄스 대 펄스 에너지 안정성

CEP 안정화

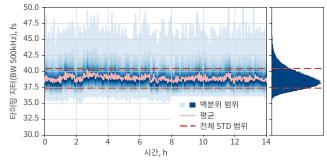

PHAROS 레이저에는 출력 펄스의 CEP(Carrier-Envelope Phase) 안정화를 위한 피드백 전자 장치가 장착될 수 있습니다. PHAROS 오실레이터의 CEO(The carrier-envelope offset)은 < 100 mrad 표준 편차로 반복률의 1/4th 로 능동적으로 고정됩니다.

PHAROS 200 kHz 반복률에서 작동하는 단기 CEP 안정성

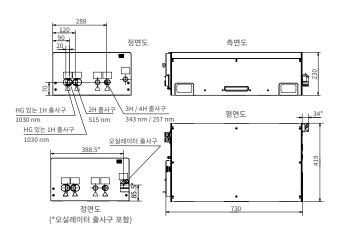
동기화된 증폭기의 CEP 안정 펄스의 표준 편차는 < 350 mrad 입니다. 증폭기 내부에서 발생하는 CEP 드리프트와 사용자 설정은 완전한 PHAROS 활성 CEP 안정화 패키지의 일부인 루프 외부 f-2f 간섭계로 보상될 수 있습니다.


PHAROS 200 kHz 반복률에서 작동하는 장기 CEP 안정성

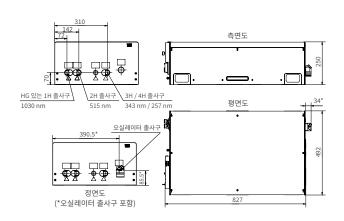
반복률 잠금


PHAROS 레이저의 오실레이터는 반복률 잠금 응용 분야에 맞게 맞춤 설정할 수 있습니다. 필요한 피드백 전자 장치와 결합하여 반복 속도는 캐비티 내부에 설치된 두 개의 피에조 스테이지를 사용하여 외부 RF 소스와 동기화됩니다.

2.8 GHz RF 소스에 잠금된 **PHAROS** 오실레이터의 위상 노이즈 데이터


반복률 잠금 시스템은 500 MHz보다 큰 RF 기준 주파수에 대해 200 fs미만의 통합 타이밍 지터를 보장할 수 있습니다. 요청 시 연속 위상 변이가 가능합니다.

14시간 이상 타이밍 지터 안정성; 2.8 GHz RF 소스에 잠금된 PHAROS 오실레이터



도면

PHAROS-PH2-730 도면. FEC, BiBurst 또는 고조파를 갖춘 PH2, PH2-SP; 고조파가 없는 PH2-UP

PHAROS-PH2-827 도면 -HE 고조파가 있는 PH2, PH2-4mJ 또는 고조파가 있는 PH2-UP

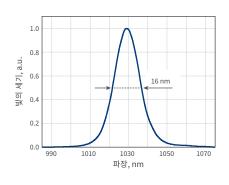
FLINT

고반복률 레이저

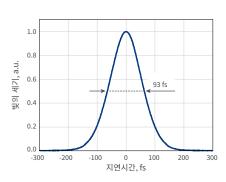
10 - 100 MHz 반복률

50 fs 이하의 펄스 지속시간

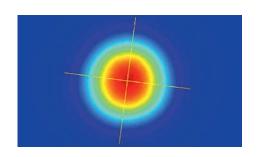
고출력 모델에서 최대 20 W

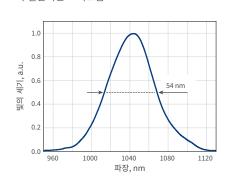

고에너지 모델에서 최대 0.6 μJ

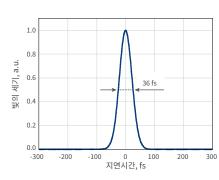
높은 출력 안정성을 위한 산업용 설계

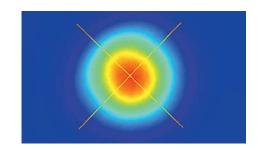

CEP 안정화 또는 반복률 잠금

FLINT-FL1


FLINT-FL1 의 일반적인 스펙트럼


FLINT-FL1 의 일반적인 펄스 지속시간


FLINT-FL1 의 일반적인 빔 프로파일


FLINT-FL2-SP 의 일반적인 스펙트럼

FLINT-FL2-SP 의 일반적인 펄스 지속시간

FLINT-FL2-SP 의 일반적인 빔 프로파일

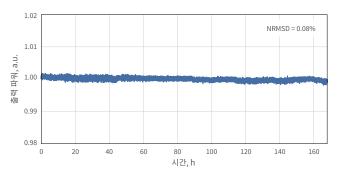
기기 사양

모델	FL1			FL2-SP		FL2		
주요 특징	CEP	RRL	콤팩트한	짧은 펄스		고출력, 고에너지		
펄스 지속시간	< 1	00 fs	< 120 fs	< 50 fs	< 120 fs	< 120 fs < 170 fs 1)		
반복률		60 – 100 MHz	2)	10 MHz	10 MHz	40 MHz	80 MHz	
최대 출력 파워	0.5 W	1 W	8 W	4 W	5 W	20	W 1)	
최대 펄스 에너지	6 nJ ³⁾	12.5 nJ ³⁾	100 nJ ³⁾	0.4 μJ	0.5 μJ	0.5 μJ	0.25 μJ	
중심 파장	1035 \pm 10 nm			1030 \pm 10 nm	1	1030 \pm 10 nm		
편광		선형, 수평						
빔 품질, M ²		< 1.2		< 1.3		< 1.2		
빔 포인팅 안정성		< 10 μrad/°C						
장기간 파워 안정성, 100 시간 4)				< 0.5%				
내부 2H 발생기 ⁵⁾		해당사항 없음 옵션; 변환 효율> 30% 21 페이지 참조						
외부 2H, 3H, 4H 발생기 ⁵⁾		옵션; 24 페이지 참조						
내부 감쇠기	해당사항 없음 포함							

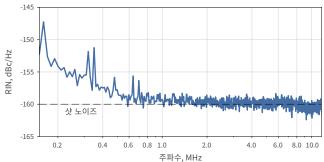
물리적 치수

레이저 헤드 (L \times W \times H)	448.27 × 206 × 115.44 mm	542 × 322 × 146 mm		
파워 서플라이, 냉각기 포함 랙 (L × W × H)	642 × 553 × 540 mm	642 × 553 × 673 mm		
냉각기	여러 ६	여러 옵션 선택 가능. sales@lightcon.com으로 문의		

작동환경 & 유틸리티 요구사항


작동 온도		15−30 °C (에어컨 권장)				
상대 습도		< 80% (비응결 상태)				
전기적 요구사양		100 V AC, 7 A – 240 V AC, 3 A; 50 – 60 Hz 100 V AC, 12 A – 240 V AC, 5 A; 50 – 60 Hz				
정격 전력			200 W			
권점 A UI 100 W		100 W	150 W			
전력 소비 냉각기		600 W	1000 W			

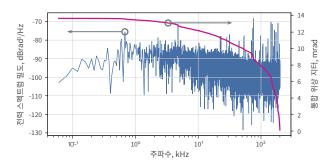
- $^{1)}~20~W$ 출력 파워 모델의 경우 낮은 파워 모델인 8 W, 12 W는 요청 시 제공.
- ²⁾ 표준 반복률은 80 MHz. 사용자 정의 반복률은 지정된 범위에서 사전 설정될 수 있음.
- ³⁾ 반복률에 의존. 80 MHz에 대한 값이 제공.
- ⁴⁾ 파워 잠금이 활성화된 상태에서 안정적. NRMSD(정규화된 제곱 평균 편차)로 표시.
- 5 외부 2H, 3H, 4H 생성은 FLINT 용 HIRO 참조.
- 5 최대 파워에서 변환 효율이 지정.



안정성 측정

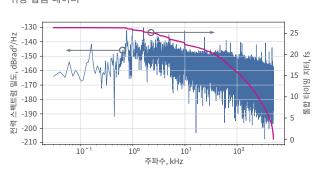
FLINT-FL2 (20 W) 7일 동안 열악한 환경 조건에서 출력 파워 안정성

FLINT 오실레이터의 RIN (Relative Intensity Noise), 샷 노이즈는 1 MHz 이상에서 -160 dBc/Hz로 제한됨

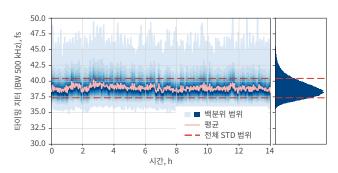


CEP 안정화

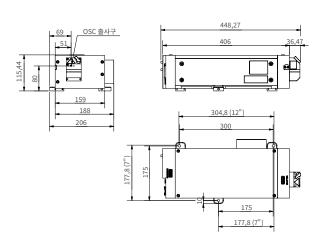
FLINT 오실레이터에는 출력 펄스의 CEP(Carrier-Envelope Phase) 안정화를 위한 피드백 전자 장치가 장착될 수 있습니다. 오실레이터의 CEO(The carrier-envelope offset)은 < 100 mrad 표준 편차로 반복률의 1/4th 로 능동적으로 고정됩니다.


CEP 고정 FLINT 오실레이터의 위상 노이즈 데이터

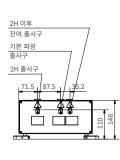
반복률 잠금

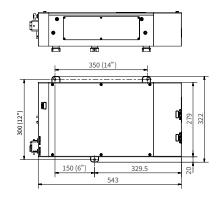

FLINT 오실레이터는 반복률 잠금 응용 분야에 맞게 맞춤 설정할 수 있습니다. 필요한 피드백 전자 장치와 결합하여 반복 속도는 캐비티 내부에 설치된 두 개의 피에조 스테이지를 사용하여 외부 RF 소스와 동기화됩니다.

2.8 GHz RF 소스에 잠금된 FLINT 오실레이터의 위상 잡음 데이터


반복률 잠금 시스템은 500 MHz보다 큰 RF 기준 주파수에 대해 200 fs미만의 통합 타이밍 지터를 보장할 수 있습니다. 요청 시 연속 위상 변이가 가능합니다.

14시간 이상 타이밍 지터 안정성; 2.8 GHz RF 소스에 잠금된 FLINT 오실레이터




도면

FLINT-FL1 도면

FLINT-FL2 도면

HG | FLINT

자동화된 2차 고조파 발생기

HG가 통합된 FLINT-FL2

515 nm 출력
자동화된 고조파 선택
시스템에 통합
산업용 설계

기기 사양

모델	FL1	FL2-SP	FL2		
가능한 고조파				2H	
펌프 반복률			11 MHz	40 MHz	76 MHz
최대 펌프 파워	HIF	RO;	7 W	20 W	
중심 파장	24 페이	지 참조		515 \pm 10 nm	
변환 효율 ¹⁾				> 30%	
				선형, 수평	

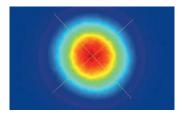
¹⁾ 최대 파워에서 지정된 변환 효율.

HG | CARBIDE

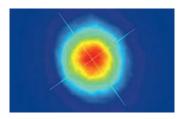
자동화된 고조파 발생기

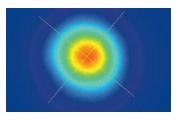
2H-3H 고조파 발생기가 장착된 CARBIDE-CB3

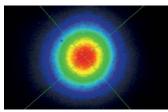
515 nm, 343 nm, 또는 257 nm 출력
자동화된 고조파 선택
레이저 헤드에 직접 장착
산업 등급 설계
50 W UV 모델 옵션

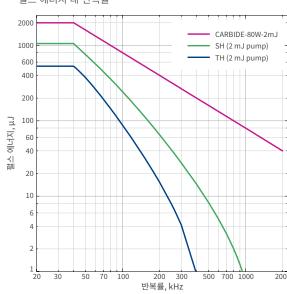

기기 사양

모델		2H	2H-3H	2H-4H	30W UV 1)	50W UV 1)
출력 파장 ²⁾ (자동 선택)		1030 nm 515 nm	1030 nm 515 nm 343 nm	1030 nm 515 nm 257 nm	1030 nm 515 nm 343 nm	1030 nm 515 nm 343 nm
펌프 펄스 에너지		20 – 2000 μJ 50 – 2000 μJ 20 – 2000 μJ 80 – 400		80 – 400 μJ	120 – 400 μJ	
펌프 펄스 지속시간		< 300 fs			≈ 500 fs	
변환 효율 / 출력 파워		> 50% (2H)	> 50% (2H) > 25% (3H)	> 50% (2H) > 10% (4H) 3)	30 W (3H) 50 W (3H)	
빔 품질 (M²) 일반적인 값	≤ 400 µJ 펌프	< 1.15 (2H)	< 1.15 (2H) < 1.2 (3H)	< 1.15 (2H) 해당사항 없음 (4H)	< 1.3 (3H)	< 1.3 (3H)
	> 400 µJ 펌프	< 1.2 (2H)	< 1.2 (2H) < 1.3 (3H)	< 1.2 (2H) 해당사항 없음 (4H)	해당사	항 없음


- 1) 자세한 내용은 CARBIDE-CB3-UV를 참조.
- ²⁾ 펌프 레이저 모델에 따라 상이. 5차 고조파 가능; 자세한 내용은 sales@lightcon.com으로 문의.
- ³⁾ 최대 5 W 출력 파워. 50 400 uJ의 펌프 에너지와 ≈ 500 fs의 펌프 펄스 지속시간의 조건 하에 4 W 이상 출력 가능.


CARBIDE-CB5 (100 kHz, 6 W) 일반적인 1H 빔 프로파일


CARBIDE-CB5 (100 kHz, 2.2 W) 일반적인 3H 빔 프로파일


CARBIDE-CB5 (100 kHz, 3.4 W) 일반적인 2H 빔 프로파일

CARBIDE-CB5 (100 kHz, 100 mW) 일반적인 4H 빔 프로파일

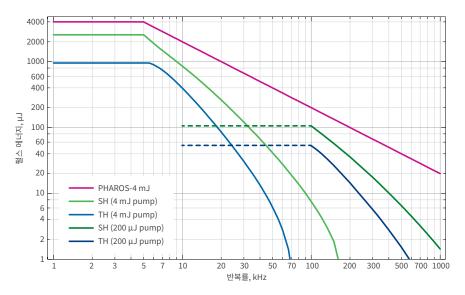
고조파 발생기가 장착된 CARBIDE-CB3-80W 펄스 에너지 대 반복률

HG | PHAROS

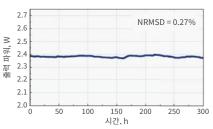
자동화된 고조파 발생기

515 nm, 343 nm, 257 nm, 및 206 nm 출력 자동화된 고조파 선택

산업 등급 설계


기기 사양

모델		2H (-HE)	2H-3H (-HE)	2H-4H (-HE)	4H-5H	
출력 파장 ¹⁾ (자동 선택)		1030 nm 515 nm	1030 nm 515 nm 343 nm	1030 nm 515 nm 257 nm	1030 nm 257 nm 206 nm	
펌프 펄스 에너지		20 – 4000 μJ	50 – 4000 μJ	20 – 4000 μJ	200 – 1000 μJ	
펌프 펄스 지속시간			100 – 500 fs			
변환 효율 > 50% (2H) > 50% (2H) > 50% (2H) > 10% (4H) ²			> 10% (4H) ²⁾ > 5% (5H) ³⁾			
빔 품질 (M²) 일반적인 값	≤ 400 µJ 펌프	<1.15 (2H)	<1.15 (2H) <1.2 (3H)	<1.15 (2H) 해당사항 없음 (4H)	쉐다 기취 어이	
	> 400 µJ 펌프	<1.2 (2H)	<1.2 (2H) <1.3 (3H)	<1.2 (2H) 해당사항 없음 (4H)	해당사항 없음	


¹⁾ 펌프 레이저 모델에 따라 상이.


고조파 발생기가 장착된 PHAROS 펄스 에너지 대 반복률

3H 출력 파워 안정성

4H 출력 파워 안정성

^{2) 20 - 1000} µJ 펌프에서 최대 출력 2 W 또는 1000 - 4000 µJ 펌프에서 1 W.

³⁾ 최대 150 mW 출력.

HIRO

외부 고조파 발생기

515 nm, 343 nm, 258 nm, 및 206 nm 출력

단순한 활성 고조파 선택 방식

출사구 동시 / 선택 출력 가능

PHAROS / CARBIDE 및 FLINT용 단독형 고조파 발생기

PHAROS / CARBIDE 전용 HIRO

THINKOU, CHINDIDE EX	3 11110	신제품	신제품			
모델	HIRO	HIRO-HP	HIRO-HE			
최대 펌프 파워	20 W	80 W				
펌프 펄스 에너지	8 – 400 μJ	200 – 1000 μJ 1000 – 400				
가능한 고조파 ^{1) 2)}	Up to 4H ³⁾	Up to 5H				
		> 50% (2H)				
변환 효율 ^{1) 4)}		> 25% (3H)				
그런 요즘 가게		> 10% (4H) ⁵⁾				
	> 5% (5H) 6)					
편광 ⁷⁾		선형, 수평 (2H, 5H)				
100 ·/		선형, 수직 (3H, 4H)				
<u>I</u> 7)						

물리적 치수

치수 (L \times W \times H)	487 × 176 × 180 mm	$552 \times 320 \times 170 \text{ mm}$
------------------------------	--------------------	--

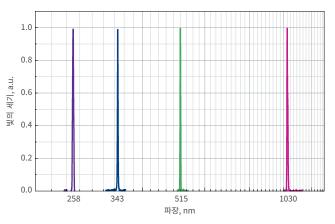
- ¹⁾ 고조파 조합 및 동시 출력에 대해서는 sales@lightcon.com 으로 문의.
- ²⁾ 요청 시 잔여 1H 파장 사용 가능.
- ③ 요청 시 백색광 연속체 출력 가능.

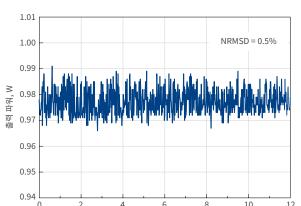
- 4) 최대 200 kHz의 반복률에 대한 펌프 동력의 퍼센테이지.
- 5) 최대 출력 파워 1 W
- ⁶⁾ 최대 출력 파워 150 mW. HIRO-HP/HE 전용.
- 7) 요청에 따라 다른 편광 설정 가능.

FLINT 용 HIRO

모델	HIRO
가능한 고조파	4H 까지 가능
최대 펌프 파워 1)	4 W
	> 35% (2H)
변환 효율 ²⁾	> 35% (2H) > 5% (3H) > 1% (4H)
	> 1% (4H)

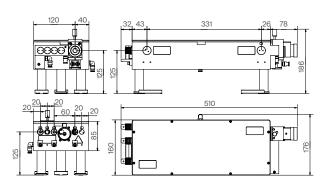
4H 파워 안정성

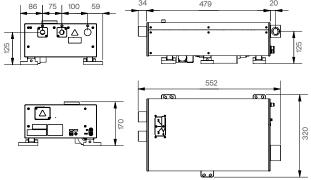

물리적 치수


치수 (L × W × H) 487 × 176 × 180 mm

- 1) 고출력 2H는 FLINT의 HG를 참조.
- 2) > 500 mW의 펌프 전력용.

HIRO 출력




-시간, h

도면

HIRO 도면

HIRO-HP/HE 도면

I-OPA

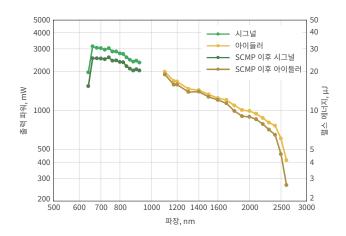
산업 등급 광 파라메트릭 증폭기

파장 조절 가능한 산업 등급 설계

싱글-박스 솔루션

파장 가변 또는 고정 모델 선택

플러그 앤 플레이 설치 및 견고한 성능


업계 내 가장 컴팩트한 OPA

공랭식 CARBIDE-CB5에 장착된 I-OPA-TW

I-OPA-TW-HP 일반적인 조절 곡선 펌프: 40 W, 400 μ J, 100 kHz

I-OPA-TW-F 일반적인 조절 곡선 펌프: 40 W, 400 μJ, 100 kHz

기기 사양

모델	I-OPA-HP	I-OPA-F	I-OPA-ONE		
구성	ORPHEUS	ORPHEUS-F	ORPHEUS-ONE		
펌프 파워		최대 40 W			
펌프 펄스 에너지		20 – 400 μJ			
반복률		최대 2 MHz			
파장 가변 범위 1)	640 – 1010 nm (시그널) 1050 – 2600 nm (아이들러)	650 – 920 nm (시그널) 1200 – 2500 nm (아이들러)	1350 – 2000 nm (시그널) 2100 – 4500 nm (아이들러)		
버희 ÷ O		> 7% @ 700 nm (40 – 400 µJ 펌프; 최대 1 MHz)			
변환 효율		> 3.5% @ 700 nm (20 – 40 μJ 펌프; 최대 2 MHz)			
펄스 대역폭 ²⁾	80 – 220 cm ⁻¹ @ 700 – 960 nm	200 – 1000 cm ⁻¹ @ 650 – 920 nm 150 – 1000 cm ⁻¹ @ 1200 – 2000 nm	60 – 150 cm ⁻¹ @ 1450 – 2000 nm		
펄스 지속시간 ^{2) 3)}	120 – 250 fs	< 55 fs @ 800 – 920 nm < 70 fs @ 650 – 800 nm < 100 fs @ 1200 – 2000 nm	100 – 300 fs		
장기간 파워 안정성, 8 h 4)	< 1%	< 1% @ 800 nm			
펄스 대 펄스 에너지 안정성, 1 min ⁴⁾	< 1%	< 1% @ 800 nm			
파장 확장 옵션	320 – 505 nm (SHS) ⁵⁾ 525 – 640 nm (SHI) ⁵⁾	sales@lightcon.com으로 문의	4500 – 10000 nm (DFG)		
펄스 압축 옵션 ²⁾	해당사항 없음	SCMP (시그널 펄스 압축기) ICMP (아이들러 펄스 압축기) GDD-CMP (GDD 제어 기능이 있는 압축기	해당사항 없음		

¹⁾ 고정 파장(FW; Fixed Wavelength)의 경우 시그널 또는 아이들러 범위에서 단일 파장을 선택할 수 있습니다. 신호에는 액세스 가능한 아이들러 쌍이 있을 수 있으며, 그 반대의 경우도 마찬가지입니다.

- 40 100 fs @ 1200 2000 nm.
- 3) 출력 펄스 지속시간은 선택한 파장과 펌프 레이저 펄스 지속시간에 따라 달라집니다.
- ⁴⁾ NRMSD(정규화된 평균 제곱근 편차)로 표시됩니다.
- 🤊 펌프 파워의 백분율로 지정된 변환 효율은 최고 1.2%

34

32

30

28

26

24

22

160

140

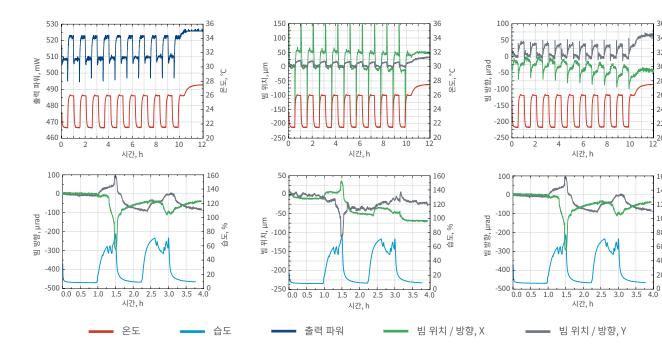
120

100

80

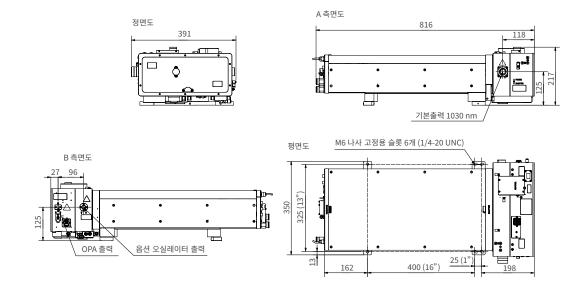
60

40

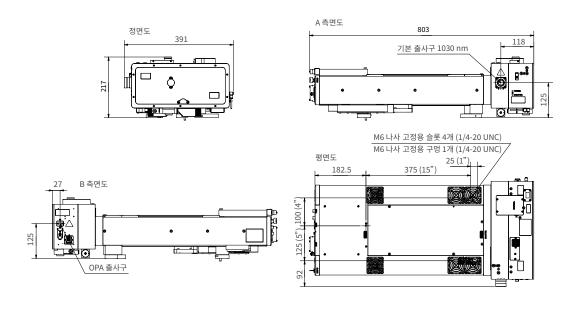

20

습 다

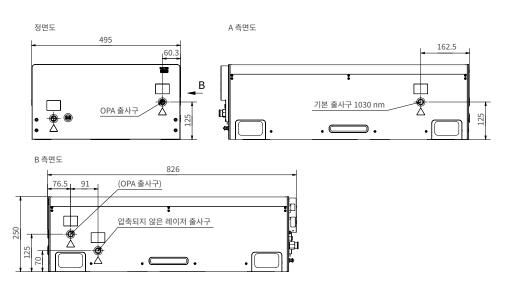
12₂₀


10

열악한 환경 조건에서 I-OPA의 출력 파워, 빔 포지션 및 방향의 안정성



²⁾ I-OPA-F 광대역 펄스는 외부에서 압축됩니다. 압축 전 일반적인 펄스 지속시간:120 - 250 fs, 압축 후: 25 - 70 fs @ 650 - 920 nm,


I-OPA-HP가 결합된 CARBIDE-CB3 도면 및 출력 포트

I-OPA-HP가 결합된 CARBIDE-CB5 도면 및 출력 포트

I-OPA-HP가 결합된 PHAROS-PH2 도면 및 출력 포트

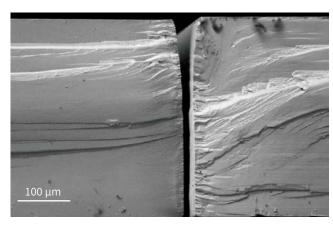


28

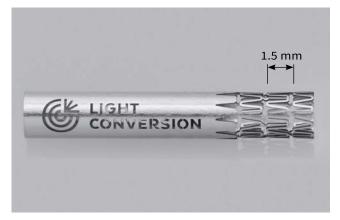
미세가공 응용 분야

LIGHT CONVERSION은 오늘날 가장 까다로운 응용 분야에 동급 최고의 레이저를 제공합니다.

본 섹션에서는 가전제품, 반도체, 의료, 명품, 자동차 및 항공우주와 같은 산업을 위한 드릴링, 절단, 용접, 표면 구조화 및 마킹을 포함하여 초고속 광 물질 상호 작용을 통해 구동되는 미세 가공의 예를 제공합니다.


텅스텐 카바이드의 선택적 어블레이션.

고대비 마킹

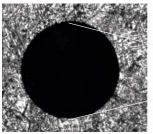

BiBurst 옵션을 사용하여 스테인리스강에 고대비 흑백 마킹.

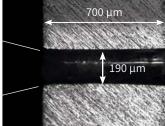
깨지기 쉽고 열에 민감한 재료 절단

멀티 패스 카드뮴 텅스테이트 절단. 비균열. 모든 히트 트레이싱 효과 제거. 출처 : Micronanics Laser Solutions Centre.

스테인리스강 스텐트 절단

스테인리스강을 절단해 만든 스텐트.


유리 바늘 미세드릴링



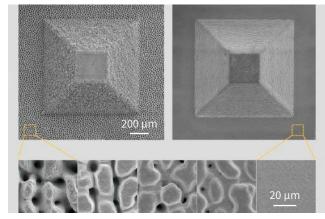
유리 바늘 미세드릴링.

출처 : Workshop of Photonics.

철강 드릴링

테이퍼가 없는 스테인리스강 합금의 구멍 미세드릴링.

출처 : Workshop of Photonics.


복잡한 3D 표면 밀링

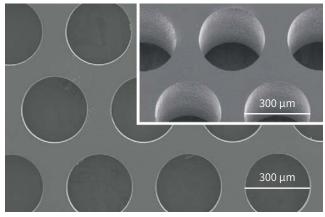
구리로 만든 3D 밀링 샘플(SEM 이미지).

출처: A.Žemaitis, et al. Scientific Reports (2019).

스테인리스강 연마

GHz burst를 사용하여 연마하기 전과 후의 스테인리스강에서 절제된 구조의 SEM 이미지(왼쪽에서 오른쪽으로).

출처: D.Metzner, et al. Applied Surface Science (2020).

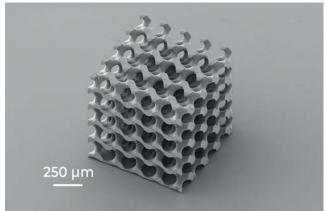

유리 복굴절 부피 수정

복굴절-지연 변화 유도 형상으로 평행 편광된 빛에서 일어나는 색상 차이.

출처 : Workshop of Photonics.

고정밀 유리 드릴링

테이퍼가 없는 유리 마이크로 드릴링.

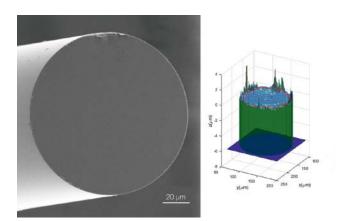

출처 : Workshop of Photonics.

3D 유리 에칭

용융 실리카로 제작된 구조.

3D 멀티포톤 중합

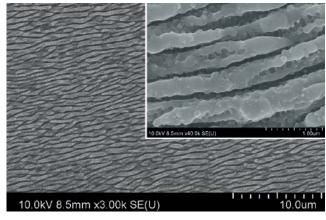
멀티포톤 중합을 사용하여 SZ2080 폴리머로 제작된 3D 구조.


출처 : Femtika.

미세유체 채널 절제 및 용접

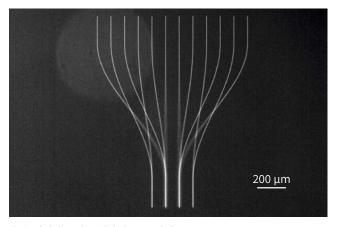
채널 밀봉을 이용한 미세유체 칩 제조.

출처: Workshop of Photonics.


파이버 절단

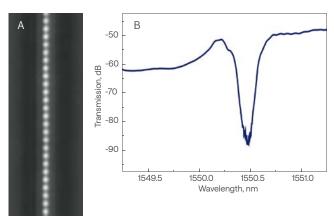
레이저 기반 스크라이빙 후 광섬유 단면(좌)과 그 표면 프로파일(우).

출처 : Swinburne University of Technology.


SERS 센서 제작

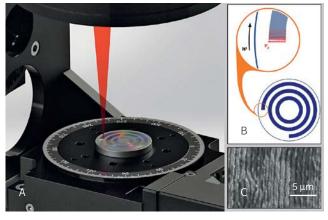
프로그레시브 레이저 스캔을 조사한 후 Ti-6Al-4V (TC4) 표면의 SEM 이미지.

출처: L.Lu, et al. Nanomaterials (2019).


3D 도파관

용융 실리카 유리로 제작된 3D 도파관.

출처: Workshop of Photonics.


브래그 격자 도파관(BGW) 리소그래피

도파관에 새겨진 1차 브래그 격자(a). BGW의 투과 공진 스펙트럼(b).

출처: G.Zhang, et al. Photon. Res. (2019).

마찰 및 마모 감소

레이저 처리의 개략도 (a), 레이저 패터닝 전략 (b), 유도된 LIPSS의 SEM 이미지 (c).

출처: I.Gnilitskyi, et al. Lubricants (2019). Nanomaterials (2019).


안내렌즈 절단

안내렌즈 레이저 절단.

출처: LASEA.

실리콘 카바이드 다이싱

500 μm 두께의 4H-SiC 웨이퍼를 단일 패스(300 mm/s) 다이싱.

절단과 용접

단일 레이저 시스템을 사용하여 황동 부품 절단 및 용접.

실리콘 다이싱

실리콘 웨이퍼의 정밀 다이싱.

표면 텍스처링

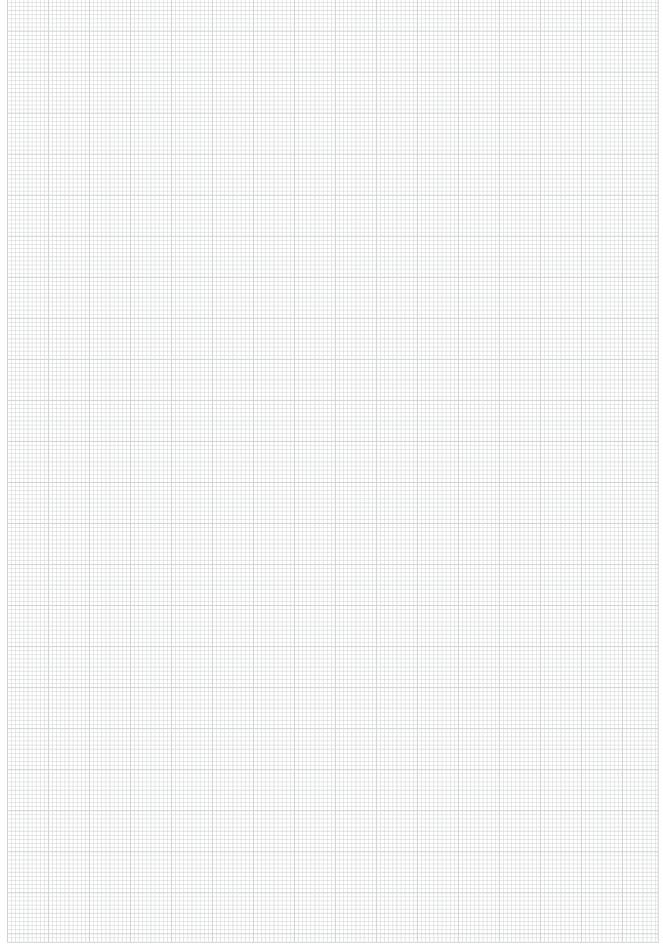
시계 베젤의 달과 같은 표면 질감.

출처: LASEA.

노즐 드릴링

노즐 구멍의 정밀 드릴링.

글로벌 대리점 네트워크


호주 뉴질랜드	Lastek Pty Ltd Adelaide, Australia Phone: +61 8 84 438 668 ricardas@lastek.com.au www.lastek.com.au	이스라엘	ROSH Electroptics Ltd Natanya, Israel Phone: +972 (0)9 862 7401 info@roshelop.co.il www.roshelop.co.il
벨기에, 네델란드, 룩셈부르크	Laser 2000 Benelux C.V. Vinkeveen, Netherlands Phone: +31 (0) 297 266191 info@laser2000.nl www.laser2000.nl	이탈리아	Optoprim S.r.l. Vimercate, Italy Phone: +39 039 834 977 info@optoprim.it www.optoprim.it
브라질	Photonics Ltda São Paulo, Brazil Phone: +55 11 2839 3209 info@photonics.com.br www.photonics.com.br	일본	Phototechnica Corp. Saitama, Japan Phone: +81 48 871 0067 voc@phototechnica.co.jp www.phototechnica.co.jp
체코, 슬로바키아	Femtonika s.r.o. Zbýšov, Czech Republic Phone: +420 792 417 400 info@femtonika.cz www.femtonika.cz	한국	LIGHT CONVERSION Korea Daejeon, Korea Phone: +82 42 368 1010 jungsik.seo@lightcon.com
중국	LIGHT CONVERSION China Shenzhen, China Phone: +86 189 4874 5558 sales.china@cn.lightcon.com	폴란드	Amecam Warszawa, Poland Phone: +48 602 500 680 amecam@amecam.pl www.amecam.pl
	Beijing Light-Quantum Technology Co., Ltd. Beijing, China Phone: +86 10 8290 0415 sales@light-quantum.cn www.light-quantum.cn	싱가포르	Acexon Technologies Pte Ltd. Singapore Phone: +65 6565 7300 sales@acexon.com www.acexon.com
	Genuine Optronics Limited Shanghai, China Phone: +86 21 64 325 169 jye@gen-opt.com www.gen-opt.com	스페인, 포르투갈	INNOVA Scientific S.L. Las Rozas de Madrid, Spain Phone: +34 91 710 56 50 rafael.pereira@innovasci.com www.innovasci.com
프랑스, 스위스, 벨기에	Jean-François Poisson Industrial Market Development Manager Phone: +33 674 48 0778 jf.poisson@lightcon.com	스위스	GMP SA Renens, Switzerland Phone: +41 21 633 21 21 info@gmp.ch www.gmp.ch
프랑스	Frédéric Berthillier Scientific Market Development Manager Phone: +33 745 014 410 frederic.berthillier@lightcon.com	대만	Alaser Taipei, Taiwan Phone: +886 2 2377 3118 alexfu@alaser.com.tw
독일, 오스트리아, 스위스	Ulrich Hoechner Industrial Market Development Manager Phone: +49 157 8202 5058 U.Hoechner@lightcon.com	튀르키예	www.alaser.com.tw Innova Teknoloji Ltd. istanbul, Turkey Phone: +90 216 315 03 36
독일, 오스트리아	Christian Hellwig Scientific Market Development Manager Phone: +49 (0) 174 204 9053 christian.hellwig@lightcon.com	영국	eryetistir@innova-teknoloji.com www.innova-teknoloji.com Photonic Solutions Ltd.
인도	ANATECH Laser Instruments Pvt. Ltd. Mumbai, India Phone: +91 22 4121 0001 / 02 sales@anatechlaser.com		Edinburgh, UK Phone: +44 (0) 131 664 8122 ben.agate@photonicsolutions.co.uk www.photonicsolutions.co.uk
	www.anatechlaser.com	미국, 캐나다	Light Conversion-USA, Inc. Bozeman, MT, USA Phone: +1 833 685 2872 saleslc@lightcon-usa.com

34

참고		



계산이 어렵나요?

연구원 및 엔지니어를 위한 상호작용 계산기를 사용해 보세요.

같은 페이지에 모든 계산기 등록

광학 테이블 레이아웃 플래너

맞춤형 OPA 튜닝 곡선

LIGHT CONVERSION CHINA

702-1, F1 Building, TCL Science Park, No.1001 Zhongshanyuan Road, Nanshan Dist., Shenzhen, China Phone: +86 189 4874 5558 sales.china@cn.lightcon.com

LIGHT CONVERSION KOREA

대한민국 대전광역시 유성구 테크노3로 65, 520호 (34016) 전화번호: +82 42 368 1010 jungsik.seo@lightcon.com

LIGHT CONVERSION

Keramiku 2B, LT-10233 Vilnius, Lithuania

+370 5 2491830 Website: www.lightcon.com Sales: sales@lightcon.com

Scientific Systems Support:

support@lightcon.com Lasers Support: lasers@lightcon.com

LIGHT CONVERSION USA

201 South Wallace Ave., Suite B-2C Bozeman, MT 59715, USA Phone: +18666585404 Fax: +18666587357 SalesLC@LightCon-USA.com

toolbox.lightcon.com