An important field for biocompatible polymers is the production of vision implants known as intraocular lenses (IOL) or customized contact lenses.

Typically, the manufacture of curved surfaces is accomplished by mechanical means such as milling, turning, or lathe cutting. 3D objects/surfaces can also be manufactured using laser micromachining; however, producing a surface finish with surface roughness values lower than 1 µm Ra is difficult due to the nature of light-matter interaction.

Bursts of femtosecond laser pulses enable polishing of bio-compatible hydrophilic acrylic polymer surface to a roughness value of less than 50 nm. A laser-polished surface demonstrates a transparent appearance, and the process shows great promise towards the commercial fabrication of low surface roughness custom-shape optics.

Femtosecond laser CARBIDE is a number one choice for polymer polishing. It is capable of processing both hydrophilic and hydrophobic acrylic polymers.

  • Tunable pulse duration, 190 fs – 20 ps
  • Maximum output of 120 W and 2 mJ
  • Single-shot – 2 MHz repetition rate
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • Air-cooled model
  • Compact industrial-grade design

Micromachining of Transparent Biocompatible Polymers Applied in Medicine Using Bursts of Femtosecond Laser Pulses

E. Kažukauskas, S. Butkus, P. Tokarski, V. Jukna, M. Barkauskas, and V. Sirutkaitis, Micromachines 12 (11), 1093 (2020).

Processing Error

An error occured while processing request. Please reload window and try again. On repeated errors please contact

Error code: