Laser-induced photopolymerization, also known as direct laser lithography or direct laser writing, is a technique for the formation of three-dimensional (3D) micro- and nanostructures with variable architectures and subwavelength resolution.

The technique relies on a multiphoton absorption process in a material, such as photosensitive resin, typically transparent at the wavelength of laser radiation. The chemical change occurs at the laser focal spot via the absorption of two or more photons. The laser radiation is well-controlled for rapid prototyping of arbitrary 3D shapes with fine features. In particular, laser-induced photopolymerization is applied in the manufacturing of mesoscale optical, photonic, microfluidic components, as well as complex scaffolds for tissue engineering.

Laser-induced photopolymerization is associated mainly with petroleum-derived resins, but using bio-based materials obtained from renewable sources is becoming a trend. Such an environment-friendly approach offers easy processing, fulfills technological, functional, and durability requirements, and ensures increased bio-compatibility, recycling, and eventually lower cost. The research groups from Vilnius University and Kaunas University of Technology have recently employed a bio-based resin derived from soybean oil, which can be processed even without the addition of a photoinitiator. Their results show a high potential of the bio-based resins for high fidelity prototyping and additive manufacturing; see the publication for more details. 

The photopolymerization is effectively obtained using PHAROS and CARBIDE series femtosecond lasers with their fundamental wavelength (1030 nm) or higher harmonics (515 nm, 343 nm), or wavelength-tunable industrial-grade I-OPA (320 – 10000 nm). High short- and long-term stability together with high beam quality ensure the robust and precise formation of the 3D micro- and nanostructures.

  • Tunable pulse duration, 100 fs – 20 ps
  • Maximum pulse energy of up to 4 mJ
  • Down to < 100 fs right at the output
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • CEP stabilization or repetition rate locking
  • Thermally-stabilized and sealed design
  • 515 nm, 343 nm, 257 nm, or 206 nm output
  • Automated harmonic selection
  • Mounted directly on the laser head
  • Industrial-grade design
  • Tunable pulse duration, 190 fs – 20 ps
  • Maximum output of 120 W and 2 mJ
  • Single-shot – 2 MHz repetition rate
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • Air-cooled model
  • Compact industrial-grade design
  • 515 nm, 343 nm, or 257 nm output
  • Automated harmonic selection
  • Mounted directly on the laser head
  • Industrial-grade design
  • 50 W UV model
  • 515 nm, 343 nm, 258 nm, and 206 nm outputs
  • Simple selection of active harmonic
  • Simultaneous or switchable outputs
  • Models for PHAROS / CARBIDE and FLINT
  • Wavelength tunability in an industrial design
  • Single-box solution
  • Tunable or fixed-wavelength models
  • Plug-and-play installation and robust performance
  • The most compact OPA in the market
  • Repetition rate from 10 to 100 MHz
  • Down to 50 fs pulse duration
  • High-power models, up to 20 W
  • High-energy energy models, up to 0.6 µJ
  • Industrial-grade design for high output stability
  • CEP stabilization or repetition rate locking

3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration

D. Samsonas, E. Skliutas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Berzinš, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis et al., Nanophotonics 0 (0) (2023).

X-photon laser direct write 3D nanolithography

E. Skliutas, D. Samsonas, A. Čiburys, L. Kontenis, D. Gailevičius, J. Berzinš, D. Narbutis, V. Jukna, M. Vengris, S. Juodkazis et al., Virtual and Physical Prototyping 1 (18) (2023).

An Improved Transwell Design for Microelectrode Ion-Flux Measurements

B. Buchroithner, P. Spurný, S. Mayr, J. Heitz, D. Sivun, J. Jacak, and J. Ludwig, Micromachines 3 (12), 273 (2021).

Birefringent optical retarders from laser 3D-printed dielectric metasurfaces

S. Varapnickas, S. C. Thodika, F. Moroté, S. Juodkazis, M. Malinauskas, and E. Brasselet, Applied Physics Letters 15 (118), 151104 (2021).

Dual Channel Microfluidics for Mimicking the Blood–Brain Barrier

B. Buchroithner, S. Mayr, F. Hauser, E. Priglinger, H. Stangl, A. R. Santa‑Maria, M. A. Deli, A. Der, T. A. Klar, M. Axmann et al., 2 (15), 2984-2993 (2021).

Focal spot optimization through scattering media in multiphoton lithography

B. Buchegger, A. Haghofer, D. Höglinger, J. Jacak, S. Winkler, and A. Hochreiner, Optics and Lasers in Engineering 142, 106607 (2021).

Vegetable Oil-Based Thiol-Ene/Thiol-Epoxy Resins for Laser Direct Writing 3D Micro-/Nano-Lithography

S. Grauzeliene, A. Navaruckiene, E. Skliutas, M. Malinauskas, A. Serra, and J. Ostrauskaite, Polymers 6 (13), 872 (2021).

3D multiphoton lithography using biocompatible polymers with specific mechanical properties

B. Buchroithner, D. Hartmann, S. Mayr, Y. J. Oh, D. Sivun, A. Karner, B. Buchegger, T. Griesser, P. Hinterdorfer, T. A. Klar et al., Nanoscale Advances 6 (2), 2422-2428 (2020).

A Bio-Based Resin for a Multi-Scale Optical 3D Printing

E. Skliutas, M. Lebedevaite, S. Kasetaite, S. Rekštytė, S. Lileikis, J. Ostrauskaite, and M. Malinauskas, Scientific Reports 1 (10) (2020).

Dynamic voxel size tuning for direct laser writing

T. Tičkūnas, D. Paipulas, and V. Purlys, Optical Materials Express 6 (10), 1432 (2020).

1

2 Next

Processing Error

An error occured while processing request. Please reload window and try again. On repeated errors please contact sales@lightcon.com

Error code: