Laser–Tissue Interaction

Femtosecond lasers offer exceptional control over laser–tissue interaction and, subsequently, minimal thermal damage on the irradiated tissue compared to picosecond, nanosecond, or continuous wave (CW) lasers. Thus, they can be applied as treating and surgical tools in such medical disciplines as ophthalmology, dermatology, dentistry, intestinal surgery, and others.

The analysis of laser–tissue interaction using ultrashort pulsed lasers demonstrated that new generation solid-state femtosecond lasers with harmonic generators for UV radiation could be a progressive change in corrective surgery of surface organs requiring very precise ablation. For example, one of the most promising disciplines is ophthalmology. In particular, results by Danieliene et al. have shown corneal stromal ablation with femtosecond UV pulses in rabbits comparable with or superior to those obtained using argon fluoride excimer laser. A substantial advantage of the new-generation femtosecond lasers, PHAROS and CARBIDE, is the possibility of generating femtosecond light pulses in both the infrared and UV ranges, implying that a wide range of ophthalmic or dermatological procedures can be performed using a single laser source.

In some other cases, such as colon tissue resection, endoscopic procedures are required. Up to the recent development of hollow-core fibers, this has been hindered by the lack of suitable optical fibers for high peak power delivery. In a recent article by Shephard’s group, hollow-core fibers were successfully applied to deliver ultrashort pulses throughout the body, while the use of such pulses enabled a minimal thermally damaged region in the tissue and fine depth control of ablation. The study concluded that the combination of ultrashort pulses and hollow-core fiber delivery resent a viable route to novel minimally invasive surgical procedures.

  • 100 fs – 20 ps tunable pulse duration
  • 4 mJ maximum pulse energy
  • 20 W maximum output power
  • Single-shot – 1 MHz repetition rate
  • BiBurst
  • Automated harmonic generators (up to 5th harmonic)
  • 190 fs – 20 ps tunable pulse duration
  • 2 mJ maximum pulse energy
  • 80 W maximum output power
  • Single-shot – 2 MHz repetition rate
  • BiBurst
  • Air-cooled version
  • 515 nm, 343 nm, 257 nm, or 206 nm output
  • Automated harmonic selection
  • Mounted directly on the laser head
  • Industrial-grade design
  • 515 nm, 343 nm, or 257 nm output
  • Automated harmonic selection
  • Mounted directly on the laser head
  • Industrial-grade design
  • 30 W UV model option

Dynamics of picosecond laser ablation for surgical treatment of colorectal cancer

R. J. Beck, I. Bitharas, D. P. Hand, T. Maisey, A. J. Moore, M. Shires, R. R. Thomson, N. P. West, D. G. Jayne, and J. D. Shephard, Scientific Reports 1 (10) (2020).

DNA-Damaging Effect of Different Wavelength (206 and 257 nm) Femtosecond Laser Pulses

V. Morkunas, G. Urbonaite, E. Gabryte‑Butkiene, S. Sobutas, M. Vengris, R. Danielius, and O. Ruksenas, Photobiomodulation, Photomedicine, and Laser Surgery 4 (37), 254-261 (2019).

Preclinical evaluation of porcine colon resection using hollow core negative curvature fibre delivered ultrafast laser pulses

S. M. P. C. Mohanan, R. J. Beck, N. P. West, M. Shires, S. L. Perry, D. G. Jayne, D. P. Hand, and J. D. Shephard, Journal of Biophotonics 11 (12) (2019).

Characterization of skeletal muscle passive mechanical properties by novel micro-force sensor and tissue micro-dissection by femtosecond laser ablation

M. Garcés‑Schröder, D. Metz, L. Hecht, R. Iyer, M. Leester‑Schädel, M. Böl, and A. Dietzel, Microelectronic Engineering 192, 70-76 (2018).

DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses

V. Morkunas, E. Gabryte, M. Vengris, R. Danielius, E. Danieliene, and O. Ruksenas, Photomedicine and Laser Surgery 12 (33), 585-591 (2015).

High-speed photorefractive keratectomy with femtosecond ultraviolet pulses

E. Danieliene, E. Gabryte, M. Vengris, O. Ruksenas, A. Gutauskas, V. Morkunas, and R. Danielius, Journal of Biomedical Optics 05 (20), 1 (2015).

All-femtosecond laser-assisted in situ keratomileusis

E. Gabryte, E. Danieliene, A. Vaiceliunaite, O. Ruksenas, M. Vengris, and R. Danielius, in Ophthalmic Technologies XXIII, F. Manns, P. G. Söderberg et al., eds. (SPIE, 2013).

Corneal stromal ablation with femtosecond ultraviolet pulses in rabbits

E. Danieliene, E. Gabryte, R. Danielius, M. Vengris, A. Vaiceliunaite, V. Morkunas, and O. Ruksenas, Journal of Cataract & Refractive Surgery 2 (39), 258-267 (2013).

DNA Damage in Bone Marrow Cells Induced by Ultraviolet Femtosecond Laser Irradiation

V. Morkunas, O. Ruksenas, M. Vengris, E. Gabryte, E. Danieliene, and R. Danielius, Photomedicine and Laser Surgery 4 (29), 239-244 (2011).

Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range

M. Vengris, E. Gabryte, A. Aleknavicius, M. Barkauskas, O. Ruksenas, A. Vaiceliunaite, and R. Danielius, Journal of Cataract & Refractive Surgery 9 (36), 1579-1587 (2010).