One of the most sophisticated and intriguing applications of high-energy femtosecond pulses is the process of high harmonic generation (HHG). By focusing intense laser pulses into a gas target, one can generate much higher-order harmonics than what is possible with conventional solid-state nonlinear materials, extending well into the extreme ultraviolet (EUV) or even soft X-ray range. At the same time, thanks to the broad bandwidth and short wavelength, the resulting pulses may even reach the attosecond scale.

In general, the HHG process can be described with a simplified semi-classical three-step model. First, an intense laser field temporally suppresses the Coulomb potential of an atom. Then, an electronic wave packet can tunnel into the continuum and is accelerated by the driving laser field. When the driving laser field reverses, the electronic wave packet is pulled back to the atomic core to interfere with the residual bound electronic wave packet in the ground state of the system. The interference results in a burst of coherent photons with photon energies from tens to thousands of electronvolts (eV). Since this process is repeated every half-cycle of the laser field, interference between consecutive pulses results in odd high-order harmonics of the fundamental frequency and, in the time-domain, an attosecond pulse train.

HHG typically requires laser intensities on the order of 1014 W/cm2 to distort the Coulomb potential and allowing the electron to tunnel out and get accelerated to high energies. Such fields are usually obtained by high-peak-power systems, such as optical parametric chirped-pulse amplification (OPCPA) systems. Though, HHG has also been demonstrated using direct fundamental radiation from PHAROS and CARBIDE femtosecond lasers. In any case, Yb-based laser sources are of high interest because of their high repetition rates. Traditionally, HHG has been limited to low pulse repetition rates, not exceeding a few kHz. However, many scientific applications using HHG could benefit from higher repetition rates. For example, time-resolved photoemission spectroscopy is limited in the number of emitted photoelectrons per pulse by charge effects, and therefore, the statistics can be improved only by operating at higher repetition rates. The generation of high harmonics at 100 kHz repetition rate has been reported using PHAROS femtosecond laser and focusing its radiation in both gas chamber and capillary geometries; see the publication by E. Lorek et al. and KMLabs newsletter, respectively.

Table-top solutions for the generation of ultrafast, high repetition rate, and coherent EUV light enable cutting-edge experiments, previously possible only at large-scale synchrotron facilities. The availability, reliability, and stability of HHG sources are bound to improve using compact and user-friendly laser systems provided by LIGHT CONVERSION.

  • Multi-TW peak-power pulses at up to 1 kHz
  • 800 nm, 1600 nm, or 2000 nm output
  • Few-cycle pulse duration and high pre-pulse contrast
  • Robust design with < 1-hour warm-up time
  • Exceptional CEP and pulse energy stability
  • Few cycle pulses in a compact footprint
  • 800 nm, 1600 nm, 2000 nm, or 3000 nm output
  • High repetition rate, up to MHz
  • High-contrast seed source for CPA and OPCPA systems
  • SH/TH options
  • Broad-bandwidth MIR pulses at high repetition rate
  • Continuously tunable in 2500 – 15 000 nm range
  • Short-pulse high-energy auxiliary output at 2000 nm
  • Pumped by industrial-grade lasers for high stability
  • CEP-stable option
  • Tunable pulse duration, 100 fs – 20 ps
  • Maximum pulse energy of up to 4 mJ
  • Down to < 100 fs right at the output
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • CEP stabilization or repetition rate locking
  • Thermally-stabilized and sealed design
  • Tunable pulse duration, 190 fs – 20 ps
  • Maximum output of 120 W and 2 mJ
  • Single-shot – 2 MHz repetition rate
  • Pulse-on-demand and BiBurst for pulse control
  • Up to 5th harmonic or tunable extensions
  • Air-cooled model
  • Compact industrial-grade design

Coherent narrowband light source for ultrafast photoelectron spectroscopy in the 17–31 eV photon energy range

R. Cucini, T. Pincelli, G. Panaccione, D. Kopic, F. Frassetto, P. Miotti, G. M. Pierantozzi, S. Peli, A. Fondacaro, A. D. Luisa et al., Structural Dynamics 1 (7), 014303 (2020).

Extreme ultraviolet time- and angle-resolved photoemission setup with 21.5 meV resolution using high-order harmonic generation from a turn-key Yb:KGW amplifier

Y. Liu, J. E. Beetar, M. M. Hosen, G. Dhakal, C. Sims, F. Kabir, M. B. Etienne, K. Dimitri, S. Regmi, Y. Liu et al., Review of Scientific Instruments 1 (91), 013102 (2020).

High resolution time- and angle-resolved photoemission spectroscopy with 11 eV laser pulses

C. Lee, T. Rohwer, E. J. Sie, A. Zong, E. Baldini, J. Straquadine, P. Walmsley, D. Gardner, Y. S. Lee, I. R. Fisher et al., Review of Scientific Instruments 4 (91), 043102 (2020).

Multioctave supercontinuum generation and frequency conversion based on rotational nonlinearity

J. E. Beetar, M. Nrisimhamurty, T. Truong, G. C. Nagar, Y. Liu, J. Nesper, O. Suarez, F. Rivas, Y. Wu, B. Shim et al., Science Advances 34 (6), eabb5375 (2020).

High-harmonic generation from an epsilon-near-zero material

Y. Yang, J. Lu, A. Manjavacas, T. S. Luk, H. Liu, K. Kelley, J. Maria, E. L. Runnerstrom, M. B. Sinclair, S. Ghimire et al., Nature Physics 10 (15), 1022-1026 (2019).

Symmetry and Polarization of High-Order Harmonic Generation from Solids

S. Gholam‑Mirzaei, S. Jiang, E. Crites, J. E. Beetar, R. Lu, C. D. Lin, and M. Chini, in Conference on Lasers and Electro-Optics, (OSA, 2019).

Evidence for topological defects in a photoinduced phase transition

A. Zong, A. Kogar, Y. Bie, T. Rohwer, C. Lee, E. Baldini, E. Ergeçen, M. B. Yilmaz, B. Freelon, E. J. Sie et al., Nature Physics 1 (15), 27-31 (2018).

Extreme–ultraviolet high–harmonic generation in liquids

T. T. Luu, Z. Yin, A. Jain, T. Gaumnitz, Y. Pertot, J. Ma, and H. J. Wörner, Nature Communications 1 (9) (2018).

High-harmonic generation in ZnO driven by self-compressed mid-infrared pulses

S. Gholam‑Mirzaei, J. E. Beetar, A. Chacón, and M. Chini, Journal of the Optical Society of America B 4 (35), A27 (2018).

Interferometry of dipole phase in high harmonics from solids

J. Lu, E. F. Cunningham, Y. S. You, D. A. Reis, and S. Ghimire, Nature Photonics 2 (13), 96-100 (2018).


2 Next

Processing Error

An error occured while processing request. Please reload window and try again. On repeated errors please contact

Error code: