Applications
Carrier-Envelope Phase Stabilization
The electric field of a laser pulse can be described as a sinusoidal oscillation, called the carrier, multiplied by a slowly varying envelope function. When the pulse propagates through a medium, the relative position between the carrier wave and envelope may change due to chromatic dispersion and optical nonlinearities, causing a difference between phase velocity and group velocity. The carrier-envelope offset (CEO) phase, also known as the carrier-envelope phase (CEP), is defined as the difference between the optical phase of the carrier wave and the envelope position. The CEP determines the accuracy of high-energy and attosecond experiments and ultrafast spectroscopy measurements.
PHAROS lasers and FLINT oscillators can be equipped with feedback electronics for CEP stabilization of the output pulses. The CEO of the oscillators is actively locked to 1/4th of the repetition rate with a < 100 mrad standard deviation. The CEP drift occurring inside the amplifier and the user setup can be compensated with an out-of-loop f-2f interferometer, which is a part of the complete PHAROS active CEP stabilization package. Accordingly, CEP stabilization can also be achieved in complex OPCPA systems.
- Repetition rate from 10 to 100 MHz
- Down to 50 fs pulse duration
- High-power models, up to 20 W
- High-energy energy models, up to 0.6 µJ
- Industrial-grade design for high output stability
- CEP stabilization or repetition rate locking
- Tunable pulse duration, 100 fs – 20 ps
- Maximum pulse energy of up to 4 mJ
- Down to < 100 fs right at the output
- Pulse-on-demand and BiBurst for pulse control
- Up to 5th harmonic or tunable extensions
- CEP stabilization or repetition rate locking
- Thermally-stabilized and sealed design
- Few cycle pulses in a compact footprint
- 800 nm, 1600 nm, 2000 nm, or 3000 nm output
- High repetition rate, up to MHz
- Industrial-grade pump, up to 320 W, 8 mJ
- Exceptional power and pulse energy stability
- CEP stabilization option
SYLOS lasers – the frontier of few-cycle, multi-TW, kHz lasers for ultrafast applications at extreme light infrastructure attosecond light pulse source
S. Toth, T. Stanislauskas, I. Balciunas, R. Budriunas, J. Adamonis, R. Danilevicius, K. Viskontas, D. Lengvinas, G. Veitas, D. Gadonas et al., Journal of Physics: Photonics 4 (2), 045003 (2020).
53 W average power CEP-stabilized OPCPA system delivering 55 TW few cycle pulses at 1 kHz repetition rate
R. Budriūnas, T. Stanislauskas, J. Adamonis, A. Aleknavičius, G. Veitas, D. Gadonas, S. Balickas, A. Michailovas, and A. Varanavičius, Optics Express 5 (25), 5797 (2017).
Passively CEP-stabilized frontend for few cycle terawatt OPCPA system
R. Budriūnas, T. Stanislauskas, and A. Varanavičius, Journal of Optics 9 (17), 094008 (2015).
Direct carrier-envelope phase control of an amplified laser system
T. Balčiūnas, T. Flöry, A. Baltuška, T. Stanislauskas, R. Antipenkov, A. Varanavičius, and G. Steinmeyer, Optics Letters 6 (39), 1669 (2014).
Carrier-envelope phase control of Yb:KGW laser and parametric amplifiers
T. Stanislauskas, R. Antipenkov, V. Martinenaite, L. Karpavcius, A. Varanavicius, V. Sinkevicius, P. Miseikis, D. Grigaitis, and T. Balciunas, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, (IEEE, 2013).
Carrier envelope phase stabilization of a Yb:KGW laser amplifier
T. Balčiūnas, O. D. Mücke, P. Mišeikis, G. Andriukaitis, A. Pugžlys, L. Giniūnas, R. Danielius, R. Holzwarth, and A. Baltuška, Optics Letters 16 (36), 3242 (2011).
Cycle-engineered coherent steering of electrons with a multicolor optical parametric synthesizer
T. Balčiūnas, G. Andriukaitis, A. J. Verhoef, O. D. Mücke, A. Pugžlys, A. Baltuška, D. Mikalauskas, L. Giniūnas, R. Danielius, M. Lezius et al., in International Conference on Ultrafast Phenomena, (OSA, 2010).